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INTRODUCTION AND SUMMARY.

In this work we consider the model

= + +°eo+
(1) N R aqet—q s

Where aq % 0 and we often assume that ao =1. The €'s are inde-
pendent normal random variables with zero expected values and constant
common variances. The €'s are unobservable, the y's are observable
and the O's are constants (parameters). For purposes of theoretical
analysis, we take t to range in the set of integers, so that (1)

defines a stationary stochastic process, while for purposes of stabtistical
’inference we consider a finite set of equally spaced sample values, for

t = 1,2,...,T; in either case we call (1) the moving average model.

We call g (g > 0) the order of the moving average, and in many cases

the statistical arguments require that the «'s be such that the roots

a

of the associated polynomial equation aoz + alzq”l +oeot aq = 0 be
’less than one in absolute value.

The importance of the moving average model for time series analysis,
in which case t 1is interpreted as time, stems from several facts. Among
them we note the following:

(2) In a variety of fields of application, the formulation of
reasonable statistical models leads to moving average schemes, or more
complicatéd versions of them. For several examples see Nicholls, Pagan
and Terrell (1973). One may ascribe part of the potentiality.of the
moving average model in these situationé to its structure, which postulates

linear combinations of current and past error terms te explain the random

part of the data.



(p) The autocovariance sequence has zero values for lag lengths
exeeeding  g. ~This may be a reasongble hypothésis on which to.model
empirical phenomena.

(¢) The spectral density function is a. real-valued trigeonemetric
polynemial. - As such 1t can approximate the spectral density function
of a wide clagss of stochastic processes or time series.

(d) Due to the relation between moving average and autoregressive
models, which we consider in some detail in Chapter 1, the moving average
model may on some occasiens provide a competing framework with éimiiar
properties to that of the autoregressivehmodel and less parameters to
be studied statistically. This is important because.the linear depen-
dence of a time series on its own past values provides another empirically
attractive model.

(e) The moving average model is a simple c ase of a mixed model (auto-
regressive with moving average residuals). Mixed models are very flexible
tools to study time series empiriéaliy, and provide>a general approximation
to many stochastic processes, since they have rational spectral densities.
However their statistical analysis has proved very hard, due mainly to the
presence of the moving average part.

These reasons and otheré, have witnessed in recent years a growth of
proposals to estimate the parameters of (1). Several of these will be
reviewed in Section 1.4, after some notation is developed. It will then
be pointed‘out that there are mathematical difficulties in maximum-likeli-
hood and least squares estimation, that efficient algorithms need be
developed,if one is to follow one of these approaches, and that some

results are already available:in the area.



On the other hand some "analog" or intuitive estimators were shown
to be highly inefficient. The search for asymptotically efficient esti-
métors led to consideration of procedures. that operate in two stages.
The mathematical theory for these is also complicated, and most of our
efforts are devoted to provide proofs for two existing proposals of this
type. Besides filling in a gap in the literature, we try to gain. insight
into the esstimation problem from this basis.

In Chapter 1 We define the model; derive some of its probabilistic
properties and deduce two‘representations related to the aﬁtoregressive
model and several alternative parametfizations° The last’part of the
chapter contains a brief review of some existing estimation procedures.

In Chapter 2 we consider the possibility of using k sample auto-
covariances (k > q) +o estimate the parameters of (1). Walker (1961)
studied the statistical properties of a proposal of his when Xk is treated
as fixed and T — %, His conclusions and examples show that the méthod
is emdbwed with gdod statistical properties. Under his approach the
asymptotic distribution of the estimators depends on k; by studying

“the effect of k on the parameters of the distribution; one is guided
in the selection of a particular value of k in a practical estimation
situation.

A different approach to the theory is to let k —» e &s well as
T ;aw, and then find the conditions that give consistency, asymptotic
normality and efficiencye This is done in Chapter 2 for the case of
g=1. It isnshoﬁn (Theorem 2.3) that if k = k(T) dominates log T

1/2

and 1s dominated by T s then the estimator proposed by Walker is

consistent andvasymptbtically efficient. (That is, it achieves the



asymptotic variance of the maximum likelihood estimator.) In fact the
~consistenéy is obtained with no condition oen k(T) other that it tends
to infinity with T (Theorem 2.1).

The approach in proving these theorems involves obtaining an explicit
form for the components of the.inverse of a symmetric matrix with equal
elements along its five central dlagonals, and zeroes elsewhere. The
derivation of these results, and related material, appears in Mentz (1972).
Thére exists wide interest in solving the mathematical problem of finding
these explicit inverses. The technique that gives more useful results
_ in our case is to pose difference equations for the components of the
inverse, and solve them explicitly.

The main technique used. to prove the asymptotic normality of the
estimator, is a central limit theorem for normalized sums of random
vafiables that are dependent of order Kk, where k  tends to infinity
with T.

As a consequence of the stuay in Chapter 2, an alternative form of
the esbimator is presented in Chapter 3, which facilitates the calcula-
tions and the analysis of the practical role of k, without changing the
asymptotic properties.

In Chapter 4 we consider a differenﬁ approach due to Durbin (1959),
based on approximating the moving average of order .gq 5y an auvtoregression
of order k (k > q). This is also an appealing’estimation proposal, be-
cause the necessary computations involve the solution of standard systems
of linear equations,. and the method shows good statistical properties.

The paper by Durbin does not treat in detail the role of k . in the

parameters of the limiting normal distributions, so that Chapter 4 is



devoted to this topic for the case of g =1, when Xk is treated as
fixed and T - ~. We derive the probapility limit (Theorem 4.1) and
the variance of the limiting normal distribution of the estimator
(Theorem 4.2), and compare them with the desired values: the parameter
in (1) and the asymptotic variance of the maximum likelihood estimator.
The differences turn out to be exponentially decreasing functions of k,
confirming some of the examples presented by Durbin.

The parallel analysis with k.= k(T) was also attempted,; but at
this point nc complete proofs are available. Instead we present the
limit as k = w of the parameters of the limiting distributions és
T »>® (Theorems 4.8 and 4.9). In the case of thevpérameter of interest,
these limits coincide with the desired values mentioned above.

Finally a modification of Durbin's proposal by Anderson (1971b) is
studied in detail in Chapter 5, also for the case of ¢ = 1. The modifi-
cation simplifies the first stage of the procedure by using some of the

conditions derived from the underlying moving average model.



1.  THE MOVING AVERAGE MODEL

l.1 Introduction.

We consider the time-series medel

(1.1) - Vo = i G v
| vogs0 9t

where

(102) ao - l 3

l. a O Y

(1.3) q% ;

the sequence {et] is composed of independent normal random variables,

- and for all cheoices of t

(1.4) get =0,
and
(1:5) gL =0

where O < 62 < w. Further the associated polynomial equation

q ;
(1.6) Y o299 =0
g=o0

has all its roots less than one in absolute value.
If we think of t as ranging in the set of integers {eeey, =1, O,

1,...}, then (1.1) defines a wide-sense stationary stochastic process,

even if the € 's are not identically distributed. The process beceomes

t .

strictly stationary when we assume that the et's are identically distri-

- buted. We call (1l.l) a moving average of order g.



We note that when g =1, (1l.1) reduces to the simple form

(1.7) YT e +GE

+ t-1"’

and the conditions (1.2) and (1.3) together with the condition on the
roots of (1.6) reduce to 0 < lal < 1l. We shall pay much attention to
(1.7) since the mathematical manipulations simplify considerably in

this case.

From (1.1) it is easy to see that
(1.8) 6yt =0, forall t .

The autocovariances (or simply covariances) of the yt's are

(1.9) o (8) = Covly,,yy,.)
= Yy Yo
-] sl
2
B R o 1 lsl <)
=0, lsl >q .

Ag expected, since {yt} is wide-sense stationary, the covariances
do not depend on the time . t. Equation (1.9) is written in full, for

s >0, as



2 2 o)
= l-0+ N
o (0) = o~ (1407 + aq) s
e} (l) = Og(a +HX_O +o0ed (4 a»)
Ty 1712 q-1"q’ ’
(1.10) .
o} =0 Q
y(Q) q 5
Gy(s),: O b . s = q+l 3 q+2}o.a °

(1.11) Dy(s) = 3??27 , sl =‘o,1,2,,.. .

For example, when q = 1 equations (1.10) reduce to

0,(0) = P (1402)
(1.12) cy(l)-= o,
Gy(s) =0 Pl S = 2,3;000 3

-and equation (1.11) gives

(07
p (1) = 2,
- y 1407
(1.13)
py(s)'= O} 'S, = 2,5;000 °

For . & real the function a/(lﬂlg) . attains its absolute maximum when
& =1, and its absolute minimum when .& = =l1l. It then follows that feor

Jal <1



(1.14) | ]py(l)l < % .

For arbitrary g the autocorrelations are

a-1sl

' '—o'ajaj+ISI
(1015) P (S) = = ] ISI = O,ljooo,q 2
J 2
a,
j=0 7
=0, ISI > a5,

and the correlogram (graph of py(s) against the time differences or
~"1ags") has the typical shape: = it presents possibly nonzero values up

to lag g, and zero values from there onwards.

1.2 Two Exact Representations.

For simplicity we illustrate the main ldeas with the case g.= 1.

From (1.7), by successive substitutions we obtain
R A

= vy 0 e p)

(1.16)
2
= v, - +
N P
‘o 2 k (k1
= = + =0 est 0 + L P
that is;
(1.17) jgg(«a> Vi3 = o,k



where we:define

(1.18) - <_;t.,(n.o4)]f‘:+l

t,k Ct-(k+1) °

If we think of a finite set yl,yg,...,yT ~of random variables
corresponding to model (1.7), then equations (1.17) and (1.18) above
held.for t = ktl,se.,T and any k such that -1 <k < T-1l. If we
think\of -t as ranging in the whole set of integers, then the equations
hold for all t, .and k any natural number.

It is clear. that (1.17) and (1.18) constitute an alternative repre-

sentation.of (1.7). Its importance lies in the fact that (1.17) has the

form of an autoregression;. its problem lies in that the ez K are not
2
uncerrelated, when the e areias in {1i1).
We determine the first- and second-order moments of the ei K
2

From (1.18) and (l.4) it is clear that
* —1
(1.19) 5€t,k 0

for all relevant +t and k. Further

%2

€%

2(k+1)

2, 2
6€t+ (=cx) éet—(kﬂ_)
(1.20)

2 Dk+2

o ( ) 3

H

1+

* N
that is, ¢ has a larger variance than €. The covariances are

10



Cov Ei,k’€§+s,k) = gki,k€§+s,k
(1.01) = “;‘a)k+l[g€t€t+s—-(’k+l) ¥ €€t=—(k+l)€t+S]
.=c,2(moc)]r§+l = (-1')kc720¢k+l s [s| = k1,
) 0 , ‘ otherwise .

This result can be put in a clear .visual context by introducing

some. matrix notation. Let us define the vectors

= G*
‘kt+1l,k
(1022) ’ e = :l F) €* = : ’ ®
~ ° Nk o*
S “r,k

- Then from (1l.3) and (1l.4) we deduce that
(1.23) geg' = d L, 5

where the prime denotes matrix transposition, and ;T is the identity

matrix of order T.  Similarly (1.21) can be expressed as

x ¥ 2 _ 20 kL
(102‘]‘1') gglk g’k = O 'I‘T“‘k o ( OC) g‘k‘l‘l ‘5
vhere the matrix G ., is (T-k) x (T-k), and has ones along the

diagonals in places  (k+l) above and below the main diagonal, and

(k+1)

zeroes elsewhere; if gij denotes the i, j-th element of this

matrix, then

11



(L)

iy =1, li-3] = x+1 ,

(1.25)

=0 , . otherwise .

- .Another exact representation may be obtained by letting - k  tend to
infinity. We now think of {yt} as a stochastic process with t ranging

_in the set of integers. When q.= 1, from (1.17) and (1.18) we have that

k 2

_v)d _ _ Pkt2 o 2 _ .2 2kt2
(1.26) g{jg@ (-) Yoy et] = get-k(kﬂ) oo s
which converges to zero as k — =, - since Ial <.l. Hence we write

3 T ()
(1‘27) E.t = llmk_—)OG Jz (_a) Yt . T Z ('—‘Of) ;Yt s 2
. in the sense of convergence.in mean square of sequences of random variables.
For general g we may proceed along the same lines. The details are

given in Appendix A.

1.3 Alternative Parametrizations.

‘The moving average (1l.1). is parametrized by 5 and the coefficients
wal,...,aq. For some purpeses the first g+l eguations of (1.10) provide

.an alternative useful parametrization in terms of the covariances Oy(O),

qy(l),...,qy(q). From (1l.11) it is easy to see that oy(o)‘ and the auto-
correlations py(l),...,py(q) are an equivalent set of parameters.

A general argument to show how to recover the aj's from information

about the Gy(j)'s is given in Anderson [(197la), pp. 224-25]; a practical

12



computing routine is given in G. Wilson (1969); a discussion of the
statistical comsequences of using the latter appears in Clevenson (1970).
Some authors prefer to analyze the process (1.1) through its spectral

density, which is given by

il

02 i iw] 2
fy(w) Rl L Qe -

=Y

IA
=

IA
A

1}
Rl
™o
a
L~
o
o
ol
C
+
o
[¢)]
=

(1.28) letting s = j-3'
s==q j=0
1 iws .
= == % o (8)e - using (1.9)
2n 6=-q vy

Hence fy(w) can be expressed as a function of either one of the
sete of parameters introduced above. Since the spectral density in this
case satisfies the "inversion formuls"
i1
(1.29) o (h) =f cos(wh) £ _(w)aw , h=0;,+1, +25ee0 ,
y - y
in principle we can also recover any of the sets of pafameters once fy(w)
-1s given. The practical problem. of recovering values of parameters in scme
set from information about the spectral density; gives rise to an important
avenue of estimation procedures for this model. Some of these are reviewed

in Section:1.k.

15



1.4 Some Egtimation Procedures.

In this section we review briefly s ome of the more important contri-
butions to the problem of estimating the parameters of the moving average
model (1l.1). Reviews of estimation procedures are contained in Hannan
(1969) and Walker (1961).

To organize our exposition we shall attempt to separate the various
proposals into categories according to the nature of the basic ideas
involved. Since most contributions use tools corresponding to several
lines of approach, the categories will in this sense be far from exclusive.

Throughout this section we consider a sample MEENSYRREEN /Y from
(1.1). For the sake of simplicity many remarks are referred to the case

g.= 1, or illustrated by means of it.

1.4.1 Early Work.
Wold's book (1954) is a good starting point for this review, since
he appears as the first in attempting to estimate the parameters of a

moving average process [cf. (1954), pp. 150-151]. His suggestion can be
interpreted in our notation as follows: TFrom (1.28), letting =z = elw,

we have that

2 5

=gl ‘Oé.ZJ i oc,rz_J =g (O) % e} (s)zS .
=0 4 J\3=0 7 RA=—E

(1.30) gg

% a,zd
j=0 ¢

The py(s)'s can be estimated by

1
- (1051) r =TI = = C =E S=O,l’2,ono,q,

sT =-3,T c sT

1h



and the estimators &j solved for in

2 . .
(1.32) g Y oa.zd a.z Y] = % r 2% .
quOj 3=0 9 =0 9 s=-q sT
For example, if q = 1, ¢, =, and if we let h= z+z“l, (1.30)
leads to
2 2
=7 -
ﬁ?’)’ (l"‘OéZ)(l“"OéZ ) = —§—g'=—-é—[1+06(z+z l)'l'Oéz]
y o (1+7)
(1.33) =1+-2>5n
1+
o (1)
= +1+p (1) 2z = 140 (1)n ,
z y J
50 that the desired estimator is obtained by solving rlfje“CX+rrp= 03

the only admissible reot is

1 -4 l=)+(rlT)2

(1.34) & = .
T ErlT

This estimator is consistent, but asymptotically inefficient compared
with the maximum likelihood estimator [see Whittle (1953)].
| The inefficiency of (1.34) as an estimator of Q can be ascribed.to
that of ryp as an estimgtor of Dy(l)n Hence it pays to try to improve
the estimation of the autocorrelations; some suggestions in this direction
are reviewed in sections 1.4.2 and 1l.4.5 below.

For general g, the problem of solving (1.32) for the aj's has been

considered already in section 1l.3. See also Wold [(1954), pp. 123-132, 150-1T7k4].



1.h.2. Maximum=ILikelihood Estimation.

When- the et's in (1.1) are normal, the joint distribution of the

vector y = (yl,.a.,yT)‘ generated by the moving average process is

. so=l
(1.35) , _(gn)T/;,ZIl/g €xp "" ‘EJ;Z Z ;[) )

where I = Eyy' . Since I 1is a function of the Ocj"s (and. of 02), (1.35),
taken as a function of the parameters for y fixed, is the likeliheood.function
of the observations.

The possibility of finding the maximum'likelihood estimators of the
aj's was studied by Whittle (1951), (1952), (1953). There are difficulties
in- finding explicit forms for the estimators, which can.be attributed to the
complicated nature of the inverse matrix gnl. |

For ¢g.= 1 and using some approximations, it can be shown that the

maximum: likelihood estimator approximately minimizes

(1.36) I R e % v. 240 Tf_“l Tk Tfl y -
L & X 2 t L Iy ?
1= t=1 . u=1 t=1

see e.g. Durbin (1959). The estimate aT can. then be found by means of
some search procedure, e.g. using a computer program. For most values of
q . the search for the minimizing set of aj's may be guite cumbersome,
as-has been noted repeatedly. in .the literature.

The agymptotic. theory of the maximum likelihood estimators was

explored by Whittle (1951), (1952), (1953). He have arguments to support

his claim that, asymptotically, the same behavior as in the case of

16



independent sampling from a "regular” distribution will be achieved. It
may be worthwhile to review Whittle's initial contributions, since some
cénfusion seems to exist in the literature.

| Whittle [(1953, pp. 426-427)1, argued towards the consistency of the
maximum:likelihood estimatorsy; he then considered fhe distribubion of the
maximm likelihood estimators and noted that it is "... distributed in the
same fashion as if the sample material had consisted of [T} . independent
vériates with [a given] frequency functien p{x) .s«" so that "... with
the aid of this eguivalence, estimator proberties such as efficiency, etc.;
may be established simply by referfing back to existing theorems feor
independent series” (pp. 427-428). This part of his work must be regarded
as providing an informal argument; cf. Hannan [(1960), footnote on page L46].
Finally Whittle shows that the maximum'likelihood estimators are. the
consistent estimators with minimum asymptotic variances among those satisfying
a-certain estimating equation that is basic in his work [(1953), equation
(2.8), page L428].

There has been considerable work to give formal detailed proofs of
these and other related statements. Among others see Whittle (1961);
Walker‘(l964)9 who gives a proof of consistency and asymptotic normality;
Ibragimov (1967), who treats consistency; Dzhaparidze (1970), who treats
the closely-related case of a continueous time parameter, and references
. therein.

-One important consequence of these researches is that under sultable
regularity conditions; the maximum-likelihood . estimators of the aj's .behave
asymptotically like similar estimators for the parameters of an autoregressive

model of the same order.

17



Under the present heading we also include Walker's (1961) proposal,
_that he regards as "... a modification of Whittle's method which enables

[some of i;sl difficulties to be avoided to a . large extent, and also usually
requires much less computation” (page 345). He uses the ﬁaximum likelihood
_approach to search:.for the asymptotically efficient estimators of the aute-
correlations py(l),.o.,py(q),. and the sample informatien .is used.thfough
vro,‘j = 1,2500059%k;, k > l. Walker's proposal will be studied in some
detail in chapters 2 and 3. For a review of his work see also Anderseon
[(1971a); éection 5.7.2]. Walker's paper also contains a review of
Whittle's contributions in this area.

The estimation of the autocovariances cy(s), s = 0,15e00,9 by
maximum likelihood has been approached also from the point of view of the
relation between this problem and that of estimating a covariance matrix
of special structure in multivariate normal sampling. Andersen (1971b),
(1973) defived an iterative procedure which attempts to obtain efficient
estimates of the cy(s)“so

-Recently Box and Jenkins (1970) presented computational approaches to

£ind the meximum likelihood estimates.as will be mentioned below.

1.4.3 Least-Squares Estimation.

Cloéely related to the maximum-likelihood approach.is the least-squares
estimation procedure for this case. Least squares estimation of the aj‘s
leads to nenlinear equations, which can be solved by speclal cemputer techniques;
see. e.g. Plerce (1970). This author studied the asymptotic properties of the

least squares estimates of the parameters of a moving average, and one main

18



conclusion: is that they are those of the least squares estimates of the

“parameters in a corresponding autoregressive model of the same order;

i.e. the same kind of duality we noted for the maximum likelihood estimators.
The connection is not surprising since (1.36), the approximate equation

- to be solved for the maximum-likelihood estimators, is also the least squares

estimatorg criterion equation; see Walker (1964), or Box aund Jenkins

[(1970), Chapter T7]. These latter authors analyze in detail the computa-

tional problems associated with (1.36), and also present an analysis of

the exact likelihood function. . One can say that for-finite samples, the

difference between using (1.36) and the exact likelihood arises because

one approximates gml, and further neglects the determinant in (1.35),

H

which appears in going from the independent Et

s to the yﬁ's.

l.4.4 Estimation Based on the Finite Autoregressive Approximation.

In section 1.2 it was shown that a moving average process admits a
representation as a finite autoregression with correlated residuals.
Durbin (1959) used these ideas to derive an estimation procedure for the
aj‘s; his work will be considered in detail below. For a review of this

work see Anderson [{(1971a), Section 5.7.2].

1.4.5 BEstimation Through the Spectral Density.

A group of papers has been written in the ares, where the main stress
lies in looking at the parameters as forming the spectral density (1.28);
alternatively one says that one reserts to the Fourier transform of the

available data. Some of these suggestions have resulted in rather ceomplicated
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expressions; freguently to be solved by means of the computer, but some
seem to suggest ways for estimation in more general. cases: mixed models,
. vector cases, etc. Most of the procedures are iterative, and aim at
obtaining (asymptotically) efficient estimaters.

Durbin (1961) presented what he calls "a spectral form' of his
earlier suggestion, the one we reviewed in section l.l.k. Hannan (1969),
(1970), and Clevenson (1970) also have papers in this area; the former
concentrates on the aj's and the latter on the sy(s)'s. For a recent

review of this work see Parzen (1971).
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- 2. ESTIMATTION BASED ON A PINITE NUMBER OF SAMPLE. AUTOCORRELATIONS.
ASYMPTOTIC THEORY WHEN THE NUMBER IS A FUNCTION OF SAMPLE SIZE

2.1 . Introduction.

Walker (1961) proposed a procedure to estimate the parameters of a
moving average model of order g. He considered the vector of auto=-
correlations p = (Dy(l),.ugpy(q))'°

With the notation used by Anderson [(19T71la), Section 5.7.2], the

final form of the estimator is

(2.1) B, = ;g,él)«-w

by L12 Y

=1

~22

ru)) (2)
=T ~T

It Ly denotes the vector whose components are the first k sample

autocorrelations (g < k < T) defined as in Section 1.4.1 by

, c,
(2.2) ro. = ZJ—T— , J= 1,200,k ,
J oT
where
1 TS
(2-5) ch = E £ ytyt+j ) J =010,k
t=1
' g 1)t (2) (1)
h o1 pat 101 !z ( %
then g is partitioned as g (gT sEm ) where Lo has a
5 ,
components; and gé ) has k-g components. W = E(g) is the covariance

matrix of the 1limiting normal distribution 1ﬁf (gél)=g) [see e.g.

Anderson (1971a), Section 5.7-31], and it is partitioned to conform with

‘QT as
i1 Haio
(2.4) W = ]
o1 Moo
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by H(gél)) we mean (2.4) with the components of P replaced by the

. (1) | : - -
corresponding ones of Lp e Note that pllKﬁLumrsT = py(s) =
S > Q.

When =1, W( (1) = ) i i
n og=1 Wz ) = E(rlT and is given by
13724t op(1-r2) 12 O « oo O
or(1-r") 14212 or ... 0
r2 2r l+2r2 2 « o 0
(2.5) w(x) - : : L :
O O ° * o l+2r
e s 2r
where for simplicity we write rlT = r. Then (2.1) becomes
11 C1l,k=1
w coe W
ID\T =1 = (21‘(1"I“2), r2;O’c0030) : :
,k“‘l)l k"l;k_‘l
w cee W
(2.6)
k=1 k-1
_ 2 13 .2 23
= r=2r(1l-r") jgl Vg, T Zl LANES I

¥

‘H e oae

27

kT

where we have denoted E;;(r),= (w'J). Note that (2.6) can also be

written as

N k=l
(2.7) Py = jzg m(d) Ti4q,p 2

be defining

.22

S if




mT(O) =1,

o) . .
%(j): ='210(1"":[‘ )WlJ “I’EWEJ 9 1= lg2’ ooo;k‘l °

o

Walker developed the asymptotic theory for this proposal when k is
-treated. as fixed. In the follewing sections we present the corresponding
asymgyotic<theory when  k = kT, -a function of the series length T, such
that 1imT k = . We restrict our attention to the case g = 1. It was
—»00 T .
conjectured by Walker [(1961), page 3531 that such a theory could be
developed; essentially by means of the tools we use belew, except that the

components of Wné

W will be evaluated explicitly.

2.2 Evaluation of the Components in Two Rows of the Inverse Matrix.-

From (2.4) and (2.5) we see that

(2.9) : Hoo(r) = (1+2r?7);+ 2rgl+r2g2 s

and’thenGj matrices were introduced.in Section 1.2. From now on, for con-

venience, we take the order of W, %o be L (sometimes denoted by k)

instead of kT=l° The evaluation of the components of E;; is treated in

Mentz [(1972), Section 4]. To evaluate (2.6) we only need the first two
is

rows. of ﬂ;;, or equivalently the first two columns since ﬂgg

symmetric. Let

(2.10) a=1+tr", b=2r, c=71 ,
so that
(2.11) Hpp =8 L *bG +tcg, o
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We assume throughout that lrl < % 5 & condition that py(l) was shown

to satisfy.

The associated polynomial equation:that:corresponds to: this problem is
(2.12) cx4 + bx§ Faxt tbxtc=0 s

- and has roots

2
(2.13) x = x = -1+ 1-kr _ op ’

2 2r

(2.14) X, = X =Ly 1k = 2r .
. 2r
-1+ 1-br?

Hence (2012) has the roots xi, Xl s each with multiplicity two, where

lxll < 1. It then follows that the components W;J or ﬂgg are given by

(2.35) W' = fog ()1 e ()1 + Leg(3) 1 (NI L 6 5= Leesky

The constants Cs(j) in (2.15), for columns j = 1,2, are evaluated

from the matrix equations

(2.16) ' Ac(1) = s Ac(2) =

1 0
0 1
0 0
0 0
where C(j) = (Cl(j); Cg(j), 03(;]), cbr(j))!,o In terms of partitioned

matrices, the solutions of (2.16) .are
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_ T4 .
s, s\ e At A\ /e att
(2.17) (1) = - - =
21 22 51
S21 Az g A AT\ "
41
a
212
a
22
a
(2.18) ¢(a) = 52 .
4o
a
The components of éll are
2 2
= + + = =
8, = ax + bx; cx (IVE)(JE.Ar 5) 5
2 . I3 - 2 )
= o+ Y Z = = nn
8yp = 8Xy ZDX:L + /c)éi. w\r/B)(\/ 1k 41
(2.19) \
2 2
= + + = =
By bxl axl be + cxl r o,
a.., = bx, + 2ax° + Bbx5 + Mcxa =0
22 1 1 1 i ’
The compounents of él@ are of the same form as those in (2019),with x1
replaced by X£l° The components of é@l are:
_ k =1 =2 .
(Bpy)yy = %y 8575 a5y = b +ax™ +bx,” +exy”
k-1 =1 | k=2 -2 | k=3 -3
= 9, ‘+ ———— +
(Ap1)qp = By Bgps Bgp = b+ 555 axy B PXp T ex
(2.20)
-1, -2
(Bpy)py = %y Byq0 8y = &+ bxy 7+ exy
k=1 -1 | k-2 -2
. = + =g R
(851)50 ke 1 Bup? By T 8T T BXy T exy
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The components of A are of the same form as those in (2.20), with x

=00 1
replaced by le.
By the riles of partitioned inversion
11 -1 -1 o1 -1 11
2 i - , = -
(2.21) A (837 £10 255 éel) s B Aop Aoy B
and the matrices in (2321) can. be written as
ok 2k 2k 2k
+ - omer P
8yp F Doy Xyt Ay, KXy B1p "Pyp ¥y Tdpp KXy
(2.22) A" =2 )
2k 1 2k 2k 1 =2k
"85y T boy X7 Gy X 21 Py X tep X
ok 2 2 2k _ 2k 2 22
Pk My Ky R s K KT my ok, pk s k) KX
(2.05) a2t oL |
(Y= £h = k_A
ok 2k 2k 2k
+ +
Wy thp Xy 8,5, Kty kg B tlopXy F85,K 6 kK
where
' , ok . 1 Lk 1
2, = h. + % o+ + = + + + =
(2.24) A=hy txgs (hy + Kby )+ (h5 Kho + = h7) s
(2.25) hy =8, 8., -8 8, £0 .

The bij’ cij’ dijp mij’ nij’ Sijg tijg - and .hi in expressions (2.22)

= (2.25), are either linear combinations of the original aij defined in (2.19)
and (2.20), that do not involve kT’ or at most. functionsg of kT through

factors like (kT-s)/kT for s = 1,2 or 3. Note however that in general

they are random variables, functions of Top*

For our purposes there is no need to specify the Cs(j)“s (j=1,2) in

greater detail.
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2.3 Consistency.
In the case of g = 1, from (2.6) or (2.7) we see that to prove the

mnsistency of Walker's estimator of Dy(l) it suffices to show that

LIRS}

(2.26) plim, jgl m(3) ri,p = 0

this will be deone now.

Theorem 2.1. Let y, _satisfy equation (Lo7) FOr £ = oeey =1;0,1, 000,

where 0 < Ial < 1 and the et are independent, normal with Eet = 0,

gei - o (0 < o < ) for all t. Suppose that a set of observations

of {yt} at times t = 1,2,...,T is available, and that ksz  is a

function of T (T > kt+l), satisfying

1
8

(2.27) : Limg, o ko=

Then, if e, is defined by (2.7),

o)
I
ko)
—
ot
S
®

(2.28) ‘ plim

- . ij iy R . ;  eas
Proof. Let us take the wd = w J(r), J = 12,  in the definition of the

estimator, as those evaluated in Section 2 when Egg is taken to be of
order kTp gince their difference with those when Egg is of order

kT=l is negligible as T 3 oo Then for J = l,Qg.or,kTml we have

that
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2 a1 s ‘ ’ o
2r (1-r ) Wt e r2 wEJ

il

- m(§)

[l

lor (-r)0,0) + 0,01 + 2 [oy(2) + 0,021} =

(2.29) e (P)Iey(1) + o, (1] + 2 [e5(2) + g0,(2) ) x7?
={2r (1-22) (a2 + 5 a2 4 o2 (o224 4 éL22)} &i

R I R N C R P E ] E

where the a;j‘ are given in (2.22) and (2.23).

Replacement in (2.26) gives two corresponding terms. The one associated
with the second braces of (2.29) is easily shown to converge té 0 in
probability, because the ‘aij have ‘x? as dominating factor; see (2.22)
and (2.23). The term associated with the first braces of (2.29) is
handled differently: for any fixed number of initial summends in it, it

can be used that pli r, =0 for j=>1, while for large enough
e T J

3

the exponentially declining X3

is relevant, even considering that the

number of terms increases with T. The details are given in Section T.l.

2.4 Asymptotic Normality.

In this section we prove that when the esbtimator of py(l) proposed
by Walker is based on k sample aubocorrsiations; and k  is taken to be
a functien of T, it still has a Limiting normal distribution. We first

state two lemmas.

TLemma 2.l. Let O<a<l, T= 12,000 and ,kT be a function of T

such that limT_;’m kT =, Let n and m be positive coustants. Then

a necessary and sufficient condltion that
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(2.30) Lim, ™ o -
is that
. log T -
A(2-5l) ,lj.m,I,_900 kT 0

Temma 2.2. Let the sequence. of random variables {ZT} converge in distri-

bution-to the random variable Z. Suppose that the seguence {YT] con=-

verges 1in probability to 0. Then

(2.32) pllﬂﬁLém ZT YT =0 .

These lemmas are standard results in analysis and probability theory,
respectively, and will be proved directly only for the sake of completeness.
The proofs constitute Section T.2.

The theorem we shall prove in this section-is the following:

Theorem 2.5, gt the conditions of Thecrem 2.3 hold, together with

ey
(2.33) lim &L _ g 1 I.o

Then JT (8T=py(l)) " has a limiting normal distribution with parameters

0 ana (102)/(110%) .

Proof. The proof of the theorem will be done in five parts,. as folleows:

Part l. (Replacement of sample autocorrelations by sample autocovariances).

29



T
DT=py(l) = jgl mT(j=l) Ty ==py(l)
k
S N CEer ()
= Eg; £ mT(J“?)(CjT“ gch> ; Cor - o;(O)
‘ R o (1)
(2.34) = Gy j;l mT(J=l)(chmEéjT) - gifgj (e~ Ecop) +
X 0. (1) Eeop
“1r T 7 5 (0
: J
-k
1 T 1 o (1)
= EZ_I dg %(J‘l)(cjffe p) - T_%Z)‘T— 5
where we define
o (1) o
(2.35) %(“1):'6?67: - e (1) = vl

In the last line of (2.34), we can replace ¢ by Dy(O) = plim, . Coms
without affecting the resulting limiting distribution [cf. Rao, (1965),
. _ 5 /ey -
Section 6s.2]. Also note that plimy JT (1/T)[0y(l>/cOT]‘ 0.
Hence the conclusion of this part of the proof is that T (ﬁr=py(l))

~has the same limiting distribution as

, Kp ,
(2.36) JT ‘%%57 j};o mp(3-1)(e =82 4p) -

Port 2. (Simplifying the mT(j)'s).

We have that (=1) = = p (1), m (0) = 1, and (3)  is given by
oy y T

T

20



(2.29) for . j = l,2,.».,kT-l. From the argument in the proof of

Theorem:-2.1 we see that we can write, say,

(2-57) mT(J) = m., T(J) + X T m2 T(J) s J = 192;-°°:kT’l;

=23

where 0 < A < 2. We want to argue that we can disregard the part with
lx T as a factor, and then find an explicit form for m (J) This
is done in Section T.3.2.

The conclusion of this part of the proof is to assert that it suffices
to find the limiting distribution of (2.36) when each %(j) is replaced

by ml)T(J) given by

m (§) = - —5, J=-1,
1,T 1+a2
(2.38)
= x9 l+j‘\/l-4r2 J=0,1,000,k =1 .
lT 3 22 )T
Here of course r = rlT and XlT = Xl (rlT) are random variables.

Part 3. (Substituting parameters for random variables in the m, T(j)”s).
bl

Here we prove that
k

plim, T X r{d-1) = m(g-1)1(e - £e.p)
(2.39)

= plim, T J_Z [m) (3) - m()Te ) n=0,

where we used that F;ch O for J = 2,35000 &

Our notation is: r = rips P = py(l)g X) = Xp = xl(rlT),

% = 1 = = - :
Xy xl(oy(_)) Q. Now
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. . j . 2 ~3 . 0, 2
mlﬁT(J) -m(j) = XiT (l +-J-J1=4rlT) - xi \l'+ jf1-bp )

(2.40)

- 5 a8}~ B
= - = =)’ A 4 9 e
{v‘l hrlT v/l ko )J‘Xl +l1+35¢/1 hrlT

so that the random varigbles in (2.39) will be taken to be formed by the
corresponding two . terms.

The sum over J of the first term is of the form (7.23) treated. in

k=1

o ‘ - T o Nj o Nj 3 j B
D : o Since = (=
Section T.3.3; namely /T §:j=l 3 §j+15T ince Xy (-)Y 1is
summable (la! < 1), . the sum over .J converges in distribution to a

normal random variable with zero expected value and finite variance.

- Further JlﬁhriT 5 Jlfﬁpi(l) as T s o, so that the second summand

converges stochastically to zero, by Lemme 2.2. In the second term we

have to deal with
C (g
(2.41) JT g: (xlT = xl) a7 0

or this same expression with weights j(xiT =‘§i)- We see that the proof
will be completed.if each such term coaverges stochasbtically to zere. We
treat the case of (2.41) in detail, since for the other’one a parallel

. argument holds.  The algebraic steps are presented in Section T.3.2.

The consequence of this part of the proof is that instead of (2.56)

we now. must preove that
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k

T
(2.42) ﬁd—j—d—; jz n(3-1)(c,q - ip)

has. the limiting normal distribution.-claimed in the theorem.

Part 4. (The asymptotic normality).

Let & be the random variable in (2.42). Substituting for the

T
chés from (2.3) of Section 2.1, we have that
1 T -
= =1
Qp ‘my S ﬁag m(§-1) 3 (73545 ~ETpT0s)
(2.43)
T
)
= — W,
JT t=1 T
where
k
W= . @Li:%l Ay.y ~Ey. Y. ..) t = 1,2, 000, =
(2.44)
T=%t

m{ 3~-1

T-kp+ly ene,T o

1
[t}

In Section 7.3.5 we argue that (2.43) is asymptotically normally

distributed with parameters O and
(2.15) T = Lim g(w?T +2 Wy W) s

Part 5. (The asymptotic variance).

To complete the proof it suffices to show that in (2.45)
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(20)4'6) T = )__i_ 5
2
(1+07)

where the expectations in (2.45) are given by
. kT k
(2.47)  EW . W L F Y m(g-Da(s-1) a(s)
{2. = ———— ~m(j=L)m(j ' =1) d,.,(s
+ .2 ok ’
+T t+s,T (1%ad) =0 3'=0 Jdd

using the dij(s)-introducedAin expression (7.27) of Section T+3.3.
The evaluation of 7 is presented in detail in Section T.3.5.

- The comclusion of Theorem 2.5 can easily be used to prove the

following:-

i A
Corollary 2.4. Under the conditions of Theorem 2.3, let 'aT be defined

by (1.34) with r,p replaced by BT' Then /E;(&Tma) ~has a limiting

‘normal distrl bution with parameters O and 1=a2.

Hence we showed that under the stated conditions, the procedure
in this chapter achieves asymptotically the variance of the maximun

likelihood. estimator.
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5. ESTIMATION BASED ON A FINITE NUMBER OF SAMPLE AUTOCORRELATIONS.

A MODIFICATION TO SIMPLIFY THE COMPUTATIONS

From the argument in Chapter 2 it follows that Walker's estimator

of py(l) for the.first-order moving average, given in (2.7) as

’ k=1
(5°l) pT = jgo m'lIu(j) rj"'lyT Ed

is asymptotically equivalent to the estimator

~x .
G.2) p = iL- m,ald) Tyeq,p
where

‘ N B
(3.3) =ml’T(J)v— X (1+J 1 ArlT

9 j =O‘;lgoQ-gk‘”’ly

and

-1 +'¢1y4riT

(504) X = -
T ErlT

The modified estimator S; discards from ST parts having X?T

as a factor, and hence differs only slightly from 6& if k is
moderately large. |

To compute (3.1) Walker [(1961), pp. 347-348], proposed an iterative
procedure. The form (3.2) is of course much gimpler, and reflects also
the fact that the necessary components of the inverse matrix E;l have

2

been obtained in closed form.
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From a practical point of view the form (3.2) makes easy the choice

of 'k, guided by the degree of numerital approximation that is desired.

In fact XiT approaches zero fast as - j - lncreases;, and jxiT . Increases
until J reaches a value approximately equal to %anlxlTl)ﬁl, and then

decreases. - Censider the Table 5.1:

=
FEOGRhEbowo~wowmesuwmwe ke

. Table 3.1
Values of ml;T(j) for selected values of r,n,
=05 10 215 20 225

-.1000000 - 2000000 - 3000000 - 41000000 = .5000000
.0075125 .0302030 .0685482 1234089 .1961524
-.0005018 -.0040612 -.0139772 ~.0340895 -.0692193
0000314 0005123 0026761 .00885L40 0230114
-.0000018 - .0000620 -.0004922 -.0022109 -.0073620
.0000001 0000073 .0000880 . 0005372 .0022931
0.0000000 - 0000008 = .0000154 -.0001279 ~ . 0007003
0.0000000 0.0000000 .0000026 0000300 .0002106
- 0.0000000 0.0000000 = 0000004 = .0000069 -.0000626
0.0000000 0.0000000 0.0000000 .0000015 .000018k4
0.0000000  Q.0000000 0.0000000 - 0000003 = 0000053
0 .0000000 0.0000000 0.0000000 © .0000000 - .0000015
0.0000000 0.0000000 0-.0000000 00000000 = 000000k
0.0000000 0.0000000 0.0000000 0.0000000 .0000001
15 00000000: 1060000000 200 0000000

0 .0000000

<. 0RO000000K " .

36



Table 3.1 {(Continued)
1 = .6000000 = . TOO0000 = 8000000 = «9000000
2 .2888888 J40L4g504 «5500000 «T353557
3 =.1259259 = 2140023 = 3500000 - 5682477
b .0518518 .1072520 «2125000 Ceu23lhTT
5 -.0205761 - 0519085 -.1250000 -.3075804
6 0079561 0245097 0718750 .2192185
7 -.00350178 -.0113615 -.0406250 -.1539701
8 .0011278 .0051919 0226562 21068903
9 =.0004166 - 0023457 -,0125000 = 0T35060
10 0001524 .0010500 .0068359 .0501521
11 - .0000%53 =, 0004664 = 0037109 ~.0339916
12 .0000199 .0002058 .0020019 0229082
13 -.0000071 = .0000903 =.0010742 =40153631
1k 0000025 .0000394 .0005737 .0102590
15 = 0000009 -.0000171 =.0003051 - . 0068249
16 -0000003 «00000T4 0001617 0045251
17 = 0000001 = . 0000032 = .0000854 =.0029913
18 0.0000000 .C000013 0000450 .0019721
19 0.0000000 =0000005 -.0000236 -.0012970
20 0.0000000 0000002 - .0000123 .0008511
21 00000000 -.0000001 - 0000064 -.00055T7k4
22 0.0000000 .0 .00C0000 0000033 0003643
23 0.0000000 00000000 = 0000017 ~.0002377
24 0.0000000 0.0000000 .0000009 0001549
25 0.0000000 0.0000000 = 0000004 - 0001008
26 00000000 00000000 .0000002 -0000654
27 0.0000000  .0.0000000 =.000000L - 0000425
28 0.0000000 0.0000000 0. 0000000 .0000275
29 0.0000000 00000000 0,0000000 = 0000178
30 0.0000000 0.0000000 0.0000000 .0000115
For r,, negative the values of ml,T(j) are those of Table 3.1

all taken with positive signs.

Once the estimsting value of = is. avaiiable, the table can be

1

used to decide how many autocorreiations Te J = 2555+« to include

in the correction of r, given by {(3.2).

The main points discussed. in this chapter can be summarized. as

follows.
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Theorem:3.1l. Under the conditions of Theorem 2.1, let /595 be defined

, . Av
in (3.2). - Then plénﬁyéw Pp = Dy(l).

A
" Theorem 5.2. - Under the conditions of Theerem 2.3, let p; be defined

in (3.2). Then as Toew /T (S*pr(l)) ‘has a limiting normal distri-

T 3 " I
. R 2 2
bubion with parameters O and (1-0°) /(1+°) .
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L. ESTIMATION BASED .ON THE FINITE AUTOREGRESSIVE APPROXIMATION .

CASYMPTOTIC THEORY WHEN THE ORDER IS FIXED

4.1 Introduction.

Durbin (l959),proposed~an estimation procedure for the parameters
of (1.1) that we here analyze for the simplest case of ¢ = l.

As seen In Section 1.2, if we want an exact representation of‘(l.7)
of the autoregressive type we can choose between (1.17) whose residuals

are correlated, and (1.27) where the order of the autoregression is

infinite. Durbin's ideasis to use instead an approximation of the form

k

where BO‘= 1, +the ut‘s are'assumed uncorrelated with zero means and
constant variance, and the order k is assumed. large enough to make the
approximation useful for the purposes of estimation. The choice of k
~turns out to be a major theoretical and practical izsue, but we post-
pone its discussion until later.

The first stage of Durbin's proposal consists in estimating the

Bj in (4.1) by ordinary least squares. If we denote

It Py
’()'|'°2) Zt = E 5 E, = E )
I -(k-1) Py

equation (4.1) leads to
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()4"5) yz"'yl B'{"u 9 vt=k+lgoooyT9
+ B

-and the normal estimating equations are

% % :
(h.h) Vioa¥, = - i s Bn -
: geery O S

If we intreduce the nohation

T T

1 1
(4.5) Mo=% ) Yoo iTeq =Ze Yy Y. s
Yot 4 Teeale I O N £

where MT is of order k x k and QT is of order k x 1, the.sblution

(4.6) £ = owtn .

The k x k matrix ltmly%mw = (ytnﬁy;aj) is of rank -1 (every

minor of order 2 is 0). However the matrix I where the sum

=7 !
't -194-17
~is over at least Lk values of +, 1ig pogitive definite with probability
. one: the condition for linear dependence among columns is .that there
exist ng354ﬂot all equal to zero, such that

k k

Zoy, . =Ly, c.V. . 3= 15256005k
t‘yumlyt=3 : - jgi JyBﬂJ 9 3‘) sK 5

.and the probability is 0  +that the same linear combination of the yt's

is 0. Since in our asymptotic arguments T is large compared with Kk,

Lo



M, defined in (L.5), is positive definite, é;nd hence nonsingular, with
probablility 1.

It will be proved in Lemma 4.3 that plimy, o Mp =% = (oy(i=j)),
for each fixed k; that is, MT estimates consistentlyjthe covarilance
matrix of a. segment . (ylp..gpyk), sampled from (1.7).‘~The components
of ‘MT and QT are slightly different ffom‘the sample autocovariances
defined in Sections l.4.1 and 2.1, all being based.in T-k " terms. Durbin
[(1959)y pe 312] also considered usiﬁg ’ch“s to estimate the ﬁj“s, as

will be discussed in Chapber 5.

a a = 3 Ay 5 2 ¥ 2 ° .
Let ET (blT9b2Tﬁ'0-9ka) « Then Durbin's final estimator for
Lo is
k=1
A izg bini+lgT
(4e7) G = 7 Bl 3
'biT
i=0
where bOT =:'1. To preserve some symmetry we let the sum in the denominator

of (4.7) include terms only up to k-1, as in the numerator, while it
could also include biT; for k moderately large and as T —= e, . the
difference between the two possibilities will be very small.

Durbin's argument to pass from (L4.6) to (L4.7) is based on approxi-

mating the joint distribution of the b,

JTVSp introducing the parameter

& by equating the covariances gy£y£+s with those of the moving=-average
medel, and then looking for the maximum-likeliheoed estimator of Q. From
our point of view we take (L4.7) and (4.6) as defining the estimator, and
try to derive its asymptotic properties.‘

Durbin argued that provided one cah,Choose k as needed,. the

estimator would be consistent and achieve asymptotically

b1



(4.8) var(8,) ,.5% (1-07) ,

which. is Whittle's [(1954), p. 432] evaluation of the minimum asymptotic
variance of consistent estimators of @. . Our main efforts are. directed
towards giving detailed proofs. of these assertions, and trying te treat

k formally.

Note that if in (L4.7) bi

o 1is replaced by (-a)*, then (L4.7)

becomes equal to Q. This provides an interpretation. of Durbin's final

form.of the estimator. The interpretation is based on the fact that

if the u_ are considered to approximate the ez of (1.17)s then Bj

is approximately equal to (--Oé)J and hence b approximately estimates

JT

(-a)!. The approximation is 'a priori' very good,.in the sense that up

to second-order moments Var (ez k) . differs from a .constant by a factor
-5y :

+ L
2k 2), which tends tocone very fast [efi (1.20)].: But note. that if

( 1+
in (4.1) we substitute directly Bj = (-a)j, we will not obtain a simple
e stimating precedure for Q3 in fact we will then be led to egquations
similar to (1.36) in level of complexity.

) One attraction of Durbin's prbposal,is that both stages are based on
linear operations. There exists then a good motivation te investigate

some of the details of the methed. Many of the known estimation procedures

are also two=-staged, but are computationally more complicated.

4.2, Probability Limit When the Sample Size Increases.

A
We now.consider the evaluation of ,plinﬁLMn G when k :is regarded

T

as fixed, not changing with T. In this section we treal the case ¢g=1.

o



Theorem 4.1. Let y, satisfy eguation (17) for b = coey=1,0;1 000,

where O < lal < 1 and the €, are independent, normali with get = 0y

%ei = & (0 < o < w)  for all +. Suppose that k is chosen satisfying

k > 1, and that a set of observations of {yt} at times T = 1;2,000,T

A
is_available, where T > ktl. Then for O defined by {4.7) we have

T

¢ ¢ o 2‘ )
pin,_ & -0 (1075) (140PE) - w0P(10™)
% - X Dk+6 DK+ >,
e T (luagr‘)(l_i_a_,k‘*ﬁ) - 0x0PEtR (1 0P
(#.9)
L, 2k,
o + Q251 (1 o2 0 {(1-07F) - x(1-07)
- = D Yok <

To prove this assertion we present three lemmes, bubt first observe that

(1.12) implies that

17"062 03 cee O
]
5| O 1407 .e. O o
{4.10) o= g;i:tumzl=l =0 ] . . =g P,
0 0 ve.  1HS
0
2 _ 2
(h.11) Sg»z‘%lyt = g . =0 q -
0

b3



Lemma 4.2.  Let {zz} be a sequence of randem variables and let m . be

a fixed positive integer. TIf each of the subsequences {z§+sm: § = 051yee0l

for j = 1,2,0...,m satisfies the weak law of large numbers, then the
/

sequence ,{zé] does t00.

Lemma 4.3. Under the assumpbions of Theorem 4.1,

5
To _ade
L=kl t=1"%

()‘i"’l2> pl '=j = Eytmiytaj = O'y(l‘.‘j) b4

=

10 T-e

1,5 = 051y eeesk o

The proofs of Lemmas 4.2 and 4.3 constitute Section 8.1,

Lemma 4.4. Under the assumptions of Theorem 4.1 the vector £=1q has

components

1 o Pk-23+2

s 1 o
(4.13) (=l)J * ol __:EEEIE_m 5 J = 1y2s5eeesk o

Proof. Shaman (1968) shows that if g”l = (¢J) is of order k x k, then

2"3) k“’c.1+z_)

(41)3 I (10
(4.1k) o 2k+2)

o (laa Y 1=0f

Now: - B = g.= oz q = Olcfz2 2 ~ g. Hence the components of Emlg are
2 . . : . -1 ;
Q0" times those in the first row of I [i=1 in (4.14)]; which proves

the lemma. Qo.KE«Do.

Proof of Theorem L4.l. Using the notation introduced in (4.10) and (4.11),

from Lemma 4.3 we conclude that plimlﬁm y%,= L = 02 P, and plimT__Mo gﬁl=
2 =
g g. Since MT is of order k x k, . the components of MTl are

Ly



continuous functions of the components of MT that do not involve sums
of order T of those components. Hence

Vi

. . -1 -1 2\ -
plim, o M. "= (plimy M) " =% = (/) E" .

We then -have.that
: A 2, -1 2 -1
plim, B = - (/o) B ¢"g=-E" g

whose components are evaluated. in Lemma 4.4. Substitution in (4.7)

gives the desired answer. The details are in Section 8.2.

A . k
Note: When aT is defined with the denominator in (%,?) equal to X i=Ob

expression (4.9) becomes

(1-025) (14675 - 1610
( l-—=Oc2k+2 ) lﬂ2k+4> - 2(k+1 )agk-rQ( l=062)

10k

(k.15)

X -+ n‘
2KL ) 2 oP(1-0FF2) - (x+1)(105)

(1ma2k+2)(1+a2k+4) - o(k+1)aPER

1-0F )

To illustrate.the importance of the factor of & in the first line
of (4.9), we present the results of Table 4.1. It shows the values of
. A s '
(1/a) pllHﬁLMm'aT} for several combinations of values of @ and = ke
Note that the factor approaches 1 when O =0 (for given k), while
it approaches 2(k+l)(k+2)/(2kg-+9k+15) when Q@ -1 (by L'Hospital’s

rule); the corresponding limit for (4.15) is. 2k/(2k+3).

L5
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O O=1 NV =\ PO

=

O O~ WV =W O

Factors of O

Table 4.1

in (4.9) for selected values of O

e e

HFHHEHFRRFEFER

.1

299009900
-99980396
.99999705
-99999996
<99999999
299999999
:99999999
00000000
» 00000000
« 00000000
« 00000000
» 00000000

.6

73529411
8T197977
< 93979090
9725617h
98787621
.99L78831
.99781092
«99909779
.99963384
.99985324
»99999998

99999999
»00000000

- 00000000
00000000
. 00000000
- 00000000
- 00000000
- 00000000
.00000000
- 00000000

el Sl

.2

.96153846
.99704788
99982313
«99999056
«99999952
«99999997
«99999999
+99999999
» 99999999
« 99999999
.00000000
00000000

ol

67114093
.81055427
.88987126
.93602243
.06309708
97893882
.08812350
.9933831k4
.99635518
.99801290
.99999676
«99999999
+99999999

299999999
-00000000

- 00000000
- 00000000
-00000000
- 00000000
-00000000
-00000000

1
1

N

L6

)
91743119
.98649889
.99819235
»99978313
«99997559
299999736
.99999972
« 99999997
+99999999

99999999
-00000000

00000000

=8
.60975609
STUL81457
82776960
.88136964
91728999

.94195785

.95916141
97126611
-97981879
.98586703
99967463
299999426
«99999991
«99999999
<99999999

99999999
00000000

.00000000
- 00000000
00000000
.00000000

L

;i

86206896
.96295530
.99135347
.99816190
.99963222
+99992932
.99998679
299999758
<99999956
+99999992
.00000000
1.

00000000

9

55248618
67882587
- 75932069
81394940
85200284
.88175021
90374524
.92090072
93452281
»04549%81
.99018094
.99824687
.99971094
299995534
-99999540
« 99999905

- +99999986

-99999998
99999999

99999999
- 1.00000000

)

.80000000
L92Lp1hh
97347960
.99130898
.99729158
.99918682
.99976248
299995204
.99998086
.99999468

99999999
1.00000000



From the result of Theorem 4.1 it is easy to derive an asymptotic

. = i 1 Y " A
expansion for plim QT.

Corollary 4.5. Under the assumptions of Theorem 4.1 we have that

2 uk)

(16)  plmy 8 =0+ 0P (10 (e k(107)] + ofx :

where by definition

(4.17) | lo(y)l, < My

for all y >0 and fixed M > O.

The proof of Corollary 4.5 is in Section 8.3.

For (4.15) the probability Limit as T -« can be written as

(4.18) o + 0P (1-0P)[(20P-1) - K(102)] + 0(x ”k)

4.3 Asymptotic Normality When the Sample Size Increases.

Let us define the expression in {(4.15) as O* that is,

* P 3 A
(4.19) o= pllmpam'aT 5
A
where aT is defined by
. lz PirPiva, T
(li-oQO) OéT = = - .

0
Xk
‘Z b

The inclusion of biT in the denominator will simplify some of the

calculations.
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Theorem 4.6. Under the assumptions of Theorem 4.1, let aT be defined

A
in (4.20) and  0* be egual to (4.15). Then, as T -« , /T (QT-Q*)

has a limiting normal distribution with parameters. 0 and

Dk+2 2 2k+2 Dk-+h 2
wz(lma2)(l=a2k9@ma2k+2)2 _20ftTE () - (14T ) (1407

[( 1-cPE2) 1«#a?k+”)=2( 1+1) QP52 1-0P )] ef.

™ Lo . [a) 2 2
(o) v {2 PR\ (1P)
[( l_a2k+2)( l+a2k+u) -2 k+1)a2k+2(‘ 1«=o¢2)] az
DR+D - hxal bk+6
(df B, +Q B, + @ B5) 5

are functions of O and k written in full in

“where Bl, B2, and 35

Section 8.4.3.

Proof. Since all needed results are homogeneous of degree O in o, we
take 02 = 1 without.less of generality.

- The proof of the theorem willkbe done in several partss; as follows.

)
Part l. [Asymptotic normality of /T (:ET"’ 8*)1.

Let

(4.22) g*=plim, B =-Eg,

with components given by the negative of (4.15)o
° A ¥* ) F 2o e
First we want to show that ‘/f (QT=’E ) ~has the same limiting
. g = % _ , . .
distribution as - /T' kg (ET_k%TB ). The details of this are given

in Section 8.4.1.
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Next: g?(gT + MT'E%> =Q, end m, *+ M, E% has components

L % f * 1 | % § "
T Pp Yios Yo = 7 Yo s B¥ y.
T t=k+1 h=0 h t=-1 Y%t=h T ] t=1 heo h Yt=h
(k.23)
1 It % % § 1 Tii :
T P Vs Veriop T B T Vo Tis 4 0
T g=iFl-i meo B8 Tsth B, TR T g Tt TtH-R

i.= 132_9-.-9]:&' °

These random variables have the same structure as those in equation (2.43).
By the argument given in-Section T.3.5 it follows that for fixed .i the
random variabies Z gzo 5; Y yt+imh are finitely dependent of order

- ktly;  which is now a fixed number. By the Central Limit Theorem for
finitely dependent randem variables [ses for example Anderson (1971a),
Theorem T.7.5], as T - «  the random vector wff,(QT + MT‘E*) “has a

- limiting normal distribution with parameters O and
3 o= iz * + * )¢
(4.24/ E llﬂT—Wo T S(Q’JT-FMT E’ )(EI' M’T E, ) 5

. A
and hence /ﬁ,(BT‘=E*) Chas a limiting normal distribution with parameters

O and

(L.25) E=Z

ko



Part 2. [Asymptotic covariance matrix of /T (QT-FMT E*)].

The components of (4.24) are

T k

1 * % By
(ke26)  m, E ) Y BB €y Ve Y. Yo ) 1<1, JE K
500 T s,%=K+1 h,h'=0 b™h v t-i"t-h"s=j"s=h" 7

In Section 8.4.2 it is proved in detail that the components fi. of the

matrix F defined in (L4.24) are given by

. = +
(4.27) Ty = Tig1 T Tig0 0

where
2 o, 2k+2 o
. - 7 —
f°° — l+a2 +a2k2 ('La )[(5-0 ) a (lm )]’ ‘izj ’
gL 2k+2, 2
(12""7)
p)
+
(4.28) Y = O l1-3]=1 ,
Sk
1-0f
=0, otherwise
e = ()5 1-0° 4y
° o e = m} . - 9
ij2 l_a2k+2
K (1-02)(1-0BE
(4.29) = 20(-0r) 5 5 it+5=k+l ,
"
(102K 2
=0, otherwise .
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Part 3. [Asymptotic distribution of /T (&-T-oc*)].

From (4.20) it follows that & 1is a continuous function of the

T
components of éTe Noting that
k-1 oy
:Zg Bi'Bi+l
(1.30) of = A
s 8
i=0 "t

[see formula (8.3}], from a standard result in asymptotic statistical

theory it follows that /T (&Tua*) has a limiting normal distribution

with parameters O and

- _ : k * *
XS oS o4
N = h ————
(4:51) ve b E e
i,§=1 i dJ
where the h,., are the components of H defined in (4.25) [See e.g.

1iJ

Rao (1965), Section 6a.2]. Hence it remains to show that Vv defined

in (4.31) agrees with (4.21); this is done in detail in Section 8.k4.3.

We now derive an asymptotic expression for V.

Corollary 4.7. Under the conditions of Theorem 4.6, the variance of the

iimiting distribution of vﬁf.(aﬁg=oﬁ) is

N

' 2
(4.32) v o= (1=oz2) {1-@2_1{[1=8a2+14a =8koz2(1-=oz2)]} + (1=o¢2) Bgo)azkm(agk

where B(lo) is (8.70) of Section 8.4.3 with o°F replaced by O-
The proof is in Section 8.5.
By rearranging its terms Bgo) can be written as

)



N
(o) _- J
(LI"BB B = .,k 5
) 1 jzb 3

for some coefficients pj that are functiens only of Q. We omit these

details here.

4.4 Behavior of the Parameters of the Asymptotic Distributions When

the Order of the Approximating Autoregression Increases.

One way to interpret the proposal studied in the previous sections is-
that fof‘sufficiently large samples (so that the limitiﬁg distribution as )
T 5o 1is a good approximation).by suitable choice of k one obtains an
estimator GT which is very cleose to being consistent for &, .and whose
variance is very close to (l—o?)/To Another possible approach is to
state k as a function of T, and fix the rate at which T dominates
k; this was’done,in Chapter‘2 for a method of estimating the serial
correlations.

In terms of the first interpretation mentioned above, it is relevant

to study the behavior as k —=«  of the limiting distributions obtained

in Section 4k.3.

Theorem 4.8. Under the conditions of Theorem 4.1, let B; be ag in

(8.7) and F = (fij) as in (4.24). Then, for fixed j

(b.31) Lim B = (o),

and for fixed i and J
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i e . o o .
(k.35) lim fij = 1L+, i=] s
=, li-31=1

=0 , otherwise .

Proof. Expressions (8.7), (4.28) and (4.29) make the proof immediate,

becsuse luf < le Q.EaD.

These results can be interpreted as follows: If T . is large
enough, and k - large enough, then the first stage of the estimation

procedure {approximately) estimates the (-0)Y as coefficlents of

ct
E..]
[©)
)
=
L]
e
p—
A%

(4.1} (see alsc the discussion in Secti

s . -1 ) iy R
-of these estimators is I ~. If ¢ % 1,  then the covariance matrix is

2 =1l L, = \ L ; . oL
o L . Bince I . pll:mT%cc MT for fixed  k, this shows that

and the covariance matrix

no

(approximat@ly) the first stage works as a standard regression problem

with stochastic regressors.

H

hese results were mentioned and used by Durbin [{(1959), page 30T7].

heorem 4.9. Under the conditions of Theorsm L.y, et o and ¥ be

53 in Theorem 4.6. Then

) o s Fo_
(L.36) lim, O o,
(4.37) lim oV =10 .

Proof. The forms (4.15) and (4.21) make the proéf immediate. Q.E.D.

The results of Theorems 4.8 and 4.9 can be arrived. at in a direct
way, by redoing the proof of Theorem 4.6 and discarding readily the terms
that are negligible for 'k large. Durbin [(1959), Section 4] gives a

)

different argument to this effect.
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The ith component of m, + M, B* is given by (4.23). Using

~

1t Nll

to mean "asymptotically equivalent to" (as k — «), we have that

k k 2k+2-2h

* - o)L - (-
(4.38) hgoﬁhytu—h = h§o< a) 1 PKP leg = <0y _pn !

k
~ ﬁgo (-0)® N R (“a)k+l€t;(k+l)

T

so that (4.23) is asymptotically equivalent to (1/T) } iegi] Teog St

Instead of (8.16) we avaluate directly, using Y = € T OE, 10
1 2 E 2
11 =T Ely. . e .y, _.€)=10", i=j s
e T s, tok+1 s=1 7s “t-J 't
(4.39) =a, li-jl =1,
=0 Ii""j, >1,

A
which is the same result as (4.35). Hence ﬁ (QT "‘E,*) converges in

distribution to a normal with parameters given approximately by Q and

£7Y, and in (4.31)

k
1y 0% o
(4.k0) v §oH 5%

i; j:l

Now



TV EE S S B € i € B

ER S J s
agj l-=062
and. hence
oot k[ 1 .
1“& l i+= i?’. 2n °+° s 2-
v Bl L ¥ Y o)ttt ¢ Y (-o) P (oI 1ot
1P T P 5 1”1 ot piep 1.oPER1
-T2 P li-a 2)+(l=oz Yot S
o4 i=1 1-0f o
(k.b2)
3 ) 3
= k 21 2 5
-f . + P .
= (lg ) Z (ia21_a2k2 lag) - (124) Z.l@égl
Q i=1 10t N &1
b)
(l='062) ch 2
= 2 2 = l_a -
@ (1-0)
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5. ESTIMATION BASED ON THE FINITE AUTOREGRESSIVE

- APPROXIMATION..A MODIFIED VERSION OF THE ESTIMATOR.

5.1 Introduction.

The asymptotic theory developed in Chapter 4 leads us to consider
~the two-staged estimator of & proposed by Durbin; as one that is
satisfactory from the large-sample theory viewpoint. However, nothing
has been said about its small-sample . properties.

In his original paper Durbin (1959) exhibited as illustration a
group of 10 simulation runs with T=100,  where the observations were
generated by model (1.7) with o = 0.5. The resulting estimates
showed a good agreement with the asymptotic variance (1-02)/T . but
their average differed rather seriously from 0.5. In his later paper
Walker (1961) tried to account for part of the small-sample bias, but
his correction is complicated and not completely effective from a prac-
tical point of view. Hence the gquestion of small-sample bias seems an
open one.

One possible way to improve the finite-sample performance is to
use more fully the structure of the underlying moving-average model.
This can be done is a way that also makes the computations more simple.

The. idea is due to Anderson (l971b) and consists in replacing the

first-stage equation (4.6) by
(5.1) Br= - CSr &

where
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or Cir 0 Cp
°10 Cop C1p ot O Cor
(5.2) o=\ : : N EI el B )
0 6] O oo COT ckT
and as in Chapter. .2,
1 T
(5'5) (S = = y y s 9 j == Oyl;oongk o
Jr T Tt
Ct=1
Note that fér each fixed k,
' . . ‘ 2
(5.4) plim, Cp = % s pllnﬁLMm Sp=94q -

The basic idea-is to replace in MT’ ch by O for J >'1, since

in fact cy(j) =0 if j>1 (see (1.12)); then both M, and Cp
estimate I consistently.

If we now write

l rlT O o0 & O
r 1 r e
T 1T _
(505) ; 'Q'T - OT o . . o - CO'I%I' ?
O O O o 00 l
R

R is the matrix of those sample autocorrelations that do not estimate
0, and we have that

S | -1
(5.6) B = - = R ~ R

) oL oL = R R
~T COT T ~T T -~

= s o e ¥ i i ol e
where 1, (rlT’ ’rkT) as in Section 2.1
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are given by

e

The components WijT or

2k-25+ j+i+ =it
(5.7) W o= T 1<
iJT v (l"X2 )(l_x2k+2) ? - ’
ST 1T T
where
-l+-¢l—4r§T
(5.8) Xp = TTE b

iT

see e.g. Mentz [(1972), Chapter 3]. Hence B has components

~T
(5'9) b, = = — W, . C. = - V.. Y. 2 i=l,2}o--,k;
iT o 5=1 1T 37T 5=1 ijgT —gT
and the final estimator of & .is now
k-1 k k
Lo (L g )Y Mg )
(5.10) a - - i=0 Jj=1 J=1 .
‘ () w,..r..)
150 j=1 HT T

This estimator is easier to calculate than that of Chapter 4, because
N
instead of having to solve the system MTET = -QT in the first stage, we

have the expiicit form (5.10); this of course reflects the fact that we

know explicitly. the components of QT

« The large-sample properties of
’&T will be investigated mathematically below. The small-sample perfor-
mance can be studied: through simulations, but we will not include them

in this work.
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‘As was noted in Section 4.1 Durbin [(1959); p. 312] suggested as an
alternative . to (L4.6), and hence to (5.6) above, to estimate the Sj's

Vo v :
of the approximeting autoregression. by EngzT’ where ET has components

¥ =TI
Figr T Fli-gl,T

Chapter corresponds to letting %.. = 0 for ,i=jl > 1.
1gT

for 1< 1, J < k. Clearly the proposal studied in this

5.2 Probability Limit and Asymptotic Normality.

From the proof of Theorem 4.1 and the fact that (5.4) holds, we

see that

2
%

(5.11) ' }plim,l,_”o 0=

where @& is given by (4.15) or (4.18); it would be given by (4.9)
or (4.16) if the sum on i in the denominator of (5.10) reached k-1
instead. of k. Hence &E -is also an inconsistent estimator of .

To find the asymptotic distribubtien we note that the same steps

of the proof of Theorem 4.6 can be used. In Ffact

(5.12) /T (Ep-B)
- and
-1 %
(5.13) VT L (gp*Cf)

have the same limiting distribution as T — o, by the same arguments

used in going from (8.10) to (8.13). The vector '9T+QTE* has components

. + +. + +
(5.14) Cip * PoCip T BiCop s Cpp T P_1C1p t Prlop v

-and
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_ * %
(9‘15) C°T+(5i=‘l + Bi+l

1

)clT + B;COT 5 i= 2}5)0«091{“‘1 F]

which are of the form
k
* 1 .
(5.16) hgo_7in T iz ViVisp 2 1= Lo2reensk

These randem variabies have the same structure as those of equation (2.43),
considered.in Section T.5.3; by the argument presented there, it follows
that for fixed 1  the random Va’riables Z E=O 73jfhytyt+h are finitely
dependent: of order k+l, which is now a fixed number. By the Central
Limit Theorem for finitely dependent random variables ﬁ ( gT+ng*) has
a limiting normal distribution, and so does =T gml('gT+QTEﬁ).

We have to find the variances and covariances of the limiting

distributions. Let

(5-17) u = (ll'lﬁugﬂn':u-k)ﬁ -=\/-'f (‘Q‘I‘TQT‘%*) 9

- then fui = 0 and we need guiuj = Cov(ui,uj) for i,5 = 15254605k
To aveid lengthy algebraic details as those of Chapter 4, we shall
only consider the evaluation of the variances and covariances of the
limiting distributions as T — o,  omitting factors and terms like \Oék,
.kOék, etc. that tend to 0O as k - »; proceeding as we did at the end

. of Section L.4. In particular we take (5.15) as including .i=k, because

w1Cir = ()

the addition-of B to U will. not affect the

€1

necessafy values. Hence we need the limits as T.—w of g'ui, gulu‘j

and Euiuj for 15322535005k, where u. is defined in (5.14) and Uy

1
in (5.15). For i,j > 2 we have that
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= + + + el H
guuy = T 5[CichT (FBJ 1 BJ+1) 17%207 P -Bi+1)ch¢1T P3Ciror

* * ¥ * * 2
(5.18) * 5ichCOﬁ?(Bi;1+@i+1)(BJ 15410000

* o 2

.Since 511],_ = 0 we can.evaluate

T-1 T-J
ol N
(& cype p-ein€e i) = 7 Z Z YT g114 V4570 (1o ()
] T-i T=
o T sgi tgl V01T sVg-gvy Oy 1)y (4)
, T=i T-j |
(5.19) =5 ~s§l tiil o, (1)o (3 )40, () (t-stj-1)+o (t-sti)o (t-s-1)
-0 (1)e.(3)
] T=i =
o Sgi tZi Gy(tas)cy(t=s+jﬂi)+gy(tms+j)gy(t-s§i)

Since the covariances vanish for lags exceeéding one in abselute
value, the first summand will contribute only when t-s = -1,0 or 1;
in the second summand t-s+j and t-s-i must also be one of these
three values: this determines centributions only for ~i;j = 0,1,2, and
in terms limits . t-s to be =1,0 or 1. Hence (5.19) tends as T —

.to. the sum.of the contributions listed in expression (T7.27). Then
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“ho, o o
o ’llmT_;ooT(gcichTngciTich)=2(l+)4a g ):' l=J=O)

=1+5042+oc4 5 i=j=1,
=l+lla2+054 5 1252, 0005k
(5.20) =ua(1+a2) 5+ i=0,3=1 or i=1,3=0,
06" 5 1=0,j=2 or i=2, j=0,

—o0(1467) , [1-31=1, (1,3)4(0,1),(1,0),
=? i=3l=2, (1,3)4(0,2),(2,0),

=O‘} 'i“j, > 2.

.These values can be checked with an expression in terms of the spectral
7

density. function defined in (1.28), because (5.20) equals U4n Jfﬂ cos(vi)
cos(vj).fi(v) dv, - and for the case of q = 1, fy(v),= (02/2ﬂ)(1ﬁx2+aa cos V)
See, for example, Anderson [(197la), Sections T.5.2 and 8.4.2].

Substituting in (5.18) the values derived in (5.20), we can evaluate

lJ.Jrr;T__wo guiuj = aijg S8Y

Now: The covariance matrix of the limiting normal distribution of (5.13)

;is given for large k = approximately by

-1 =1
. a 2
whose components are
& is tJ
(5.22) > o a0 5 1,351,200 0k .
' Sgt=l

Let v be the variance of the limiting normal distributlon as
~ ¥* Y ¥
T e of /T (o&~a’)g where o, 1is defined in (5.10). and @ in

(4.15), and we operate in the mamner specified earlier in this section.

As in (4.31) V is given by
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~ k ~ * X
(5.23) R wS - =<

C b iy X TR

~

where hij is given approximately by (5.22).

We then have that as k -» o, Vv approaches

| L
(5.24) (1P) + of Wolarel a2 B
1-c »(lnog )

The mathematical details are given in Chapter 9.

‘We summarize the main results obtained so far as follows.

Lemma 5.1. Under the conditions of Theorem 4.1 the covariances.of the

limiting normal distribution of /T (COTiGy(O))"/E (clT=Gy(l))} JT,CQT;

coey /f’c are given by (5.20).

kT
Proof. For a general linear process the asymptotic normality is proved,
for example, in Anderson [(1971a), Section 8.4.2]. This result merely

specializes that to the moving average model. Q.E.D.

Theoxrem 5.2. Under the conditions of Theorem 4.1 let ET be defined

in (5.6). Then plir 5 = B% given in (4.22). Purther /T (5 =ﬁ%)
qﬁ%@m ~T ~ T .~

~

has a limiting normal distribution with parameters Q and H, and

L

for large k, H is given approximately by (5.21).

Theorem 5.35. Under the conditions of Theorem 4.1 let &T be . defined

in (5.10). Then plimy, Q= o* given in {4.15) and (4.18).

e~
Further «75 UXT#J') has a limiting normal distribution with parameters

2

O and Vv, and ldm VT = v given by (5.24).
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The actual determination of the exaect values of ﬁm‘ and V©  in
the previous two theorems can be done as in Chapter 4, but we omit

those. details here.

5.3 Other Variants of the Proposal.

After the work of the previous two sections was completed, the
publication of a paper by McClave (1973) directed our. interest to some
variants of the estimation procedure described in Section 5.1. These
variants will be analyzed briefly here.

McClave (1973) studies empirically three modifications of Durbin's
proposal described in Chapter 4, with the desire to control the small-
sample bias. In our notation they consist of the following things:

(1) To let the sum in the numerator and denominator of (4.7) to range
~only over 0 < i< ng -1, for some integer n, (nl < k) to be

chosen simultaneously with k.

o T . .
(ii) To replace (1/T) Y t=k+lyt=iytﬂij2 by O in M, and m, defined

in (4.5).

.o s T .
(iii) To replace (1/T) Y t=k+lyt=iyt-iih by O in M, and m, for

h=n+lgﬂ

5 < k) to

,t2s0eesk, where n, is an integer (2 <n

2 2

be chosen simultaneously with k.

In these terms the proposal defined-in Section 5.1 corresponds to

case (iii) with n, = 1, except that the sample quantities are set equal

to their probability limits in M and in (The difference between

T "T

the sample quantities in M

. is minor, as was noted above).

and in QT
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Unfortunately for us McClave does not publish numerical results for
n2=lo

The paper under study presents results for alternative (ii) when
simultaneously several choices of n, as in (i) are made, and for

(iii) when remedy (i) is also used, and n, =n In the first such

1 2"
case the resulting procedure is effective in decreasing the bias (for
T = 100, @ = 0.5, 5 < k<10, k< n, < 6), but "the corresponding variance
increase is about fourfold" (p. 601). For the second alternative (for
T =100, @ = 0.3, 0.5 and 0.8, 5 <k <10, 1< = n, < 5), ‘the bias
is also decreased but as nq becomes small (ifee, more sample quantities
are set equal to zero) "the increase in variance...becomes more signifi-
cant as [|a|l increases" (p. 603).

It is clear that McClave's proposals could be easily studied as in
Sections 4.4 and 5.2, and also as in Sections 4.2 and 4.3, to determine
the behavior as T - . From a practical point of view proposals (i)
and (iii) imply the choice of new quantities (nl, N, or both) to be
chosen together with k, and clearly the resulting procedures are less
attractive for practical use.

We now consider the case of changing the procedure of Section 5.1

be replacing c, by O for j>1, also in ¢ defined in (5.2).

JT ~T
- - -1- -
_ [ - . . ) .

Let gn = (clT,O,...,O) s Bp= Co Sps and O defined as in
(5.10) with T i replaced by O for J > 1. The same approach of
Section 5.2 can be used. In particular, p].j’_m,l,_900 §T = ¢ as before.
Let ﬁi be the i-th component of gy = /T (§T + QTE*). Then

§ - * * * .

. = -+ + = eo

(5.25) ug = (Biq * Bi)ogp T Pieor s 1= L2yeensk,
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*¥

using again that Bg =1, B£+l

llmpaw Cov(ui;uj) = llmT_>00 5uiuJ
fde 2 )
(5.26) = o) R (1) (1) T,
i)j = l}O..’k )
which is the component a,., of a,., introduced,in‘(9.2).v Then- the

ijl i By

variance of the limiting normal distribution (as T - ), calculated

.as in Section 5.2 for  k ‘large, is

Gisotj(_O‘)s+‘c-2[d2(l+a2)?+(l+ah)2]

B - 5
t=1

1,3=1 as?.f afsf; 5,

- Ple?) 10" (108" [—f(-a)i §<-a>%i‘°’]2

a2 ag i=1 s=1
(5.27)
2 2 K 2 L2
~£F(lﬂ2)+(ﬁﬂu) (107) o zazﬂua2)+(uau)
o2 N (1~a2)6 (1~a2)2
_ 14-a2+4a4+06+a8(
= 55 .
(1=

This is the asymptotic variance of the "analog” or moment estimator
defined in (1.34) [cf. Whittle (1953), p. 452]. The connection can

be ehecked easily because for J =1 (5.7) becomes

l—xgk
_ 17T o+ 2-1 .
(5028) WilT'— (lBXE )(lnx2k+2) (X:LT -XlT ) 9 1-= l,2,loo,k 3
‘ Fipt SN
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and letting Lip = O for §>1 in (5.10) we have that

k-1
w

ng "i1r “1r Yis1,1r Tip

Qi
il
B

& 2
Eg (W3 1p Tag)

(5.29) - -

. R _ . _ -1 2
which is approximately equal to Xy = (ErlT) (1- /1 MrlT), for
large k.
The values of v and V are compared in Table 5.1 with l--oz2

for several values of .
Table 5,1

Values of v, ¥ and 1-0F for different o

o v ¥ 1-d”
.1 +990016 1.030916 <99
2 .061088 1.135488 .96
3 <923368 1.356351. .91
ol «923420 1.795849 -84
5 1.118489 2,701388 .75
.6 2.028235 L. 740849 N
o7 5.962541 10.094951 51
8 30477959 28.613550 36
.9 362.098390 149 . 482220 .19
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Hence for a wide range of values of « setting some estimators
equal to O (ﬁheir probability limit as T - ) in -MT as well as
in MT results in an increase in the asymptotic varlances.

It is apparent that the two alternatives are highly inefficient
for wvalues of la] close to 1. Since in McClave's paper it 1s
shown that his proposals were. in general effective as bias-reducing
devices, it seems safe to conjecture that 5T and 5& considered
in this Chapter should also be considered as competitors in reducing
the small-sample bias of the proposal in Chapter 4.  However, as is

often the case in time series estimation problems, there is a severe

trade off between bias and variance.
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6. GENERAL, COMMENTS

6.1 Comments About the Estimstors and our Findings.

- Tn the Introduction and Summary, and also in Chapter 1, we presented
some comments about the basic proposals considered in Chapters 2 and. L.
At the beginning or end of the preceeding four chapters we commented
‘briefly about the cerresponding estimstion procedures, and the properties
we were interested in proving. We did not discuss in any detail the
contents of the papers by Durbin ({1959) and Walker (1961), not shall we
do that here.

In this section we want to insert some additional corments stemming
from both ouf work and consideration of the two papers referred to above.
The comments will be given jointly for the proposals considered in
Chapters 2 and 3, and 4 and 5, since it will become apbarent that there
exist ample similarities among them. We shall refer only to the case of
g = 1, the first-order moving average model. It is hoped that some of
these comments may be useful for further studies of the estimation problems

considered here.

a) Interpretation of the estimators as linear combinations of sample
guantities. From Section L.l we know that Walker's estimator of
py(l) +is a linear combination of sample autocorrelations, since (2.7) is

A k-1 k
® ’ = i = - + A Dﬂl *
(6.1) Pp= 2 mpld) Ty g = g L om(3-1) Ty
J=0 : j=2
On the other hand, we can write Durbin's estimator of « given in (4.7)

as
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A .
(6.2) Gp= = T 2g(3) oy 0

a. linear combination. of the first k sample autoregressive coefficients,

where
b.p
(6.3) £:(3) = 75—, §=0;1e00k"1,
> b?T
j=o0 9
and by, = 1. Note however that in general zT(o) 4 1.

The mT(j) and ET(j) . are also randem variables, functions of the yt's.

b) Behavior of the sums of the coefficients of the linear combinations.

Having noted that the estimators are linear combinations of sample
statistics, it pays to consider the values of the sums of the coefficients.
For large T and k, we know that the mT(j) in (6.1) are approximated
by the ml;T(j) introduced in (2.37), which in turn converge to (T7.25).

Hence for large T and. ky

k-1 k-1 . A1 2
6.4 (3) ~ -a)? [1 y &2 ]«» e
(6-4) jgo " 3 jgo (-) " 1+0F (1+a)2

Similarly, for large T and k, the b, in (6.2) and (6.3) are approxi-
J

T
mated by (8.7), and that in turn by (-c)d. Hence

k-1
k-1 .g% Pyt
(6.5) Y A(3) =i~ 1
J=0 —Z b2
j=o ¥

For positive Q, (6.4) and (6.5) are smaller than 1, and for negative

¢ they are larger than 1.
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We showed that the coefficients are the appropriate ones that lead
to the desired large-sample results. However, it might be possible to
change them slightly to correct the small-sample downward biases for
& > 0, say, without affecting significatively the small- and large-sample
variances. These ideas should of course be studied mathematically as we

did in Chapter 5, and also empirically through Monte Carlo trials.

c) Asymptotic behavior of first sample aﬁfocorrelation and autoregressive

1T

consistently, no matter how k is chosen (i.e., no matter how many sample

coefficients. We discussed in Section 2.1 that r estimates py(l)

autocorrelations are computed simultaneously, in so far as 1 < k < T-1).
Hence Walker's proposal was interpreted as trying to improve the asymptotic
variance of a consistent estimator.

On the other hand, from (8.7) we see that for k fixed, -b
412k+2)-l

1T

estimates consistently as T - w, - f (1 . For large
k this is very close to «, but for the special case of k = 1 it equals
a(lﬂlg)_l. This is correct because for k = 1 we are estimating the
parameter of a first-order autoregression bonrdinar& least squares, and
that gives a consistent estimator of py(l), which equals a(lﬁae)_l
for the first-order moving average model.

The situation persists for all other sample autocorrelations and
autoregressive coefficients that enter in (6.1) and (6.2), because

. _ . . . _ J 2k+2-2]
plim, Tip = 0 for j>1, while plim, bjT = () (1-04 )

(1*12k+2)-l

» for §=1,2,...,ke One implication is that Walker's proce-
dure may depend less heavily upon the choice of k for a wide range of

values of @, and that it may also be less biased for small samples. The

71



latter point showed up to a limited extent in the examples presented in
the two original papers, but clearly more. empirical evidence is needed;
in particular about Walker's proposal that has not been considered to any
extent in this connection.

Note that T (rlT-py(l)) is asymptotically normally distributed

with variance

2 L
(6.6) 13?4t - 1-5[0‘—2 . u[a_g]
1+ 1+

1+a2+l+ocu+oc6+o¢8

[from (2.5)], while from Theorem (2.3) it follows that the variance of
the limiting normal distribution of /E'(ST~py(l)) is the first term in
the last line of (6.6).

For Durbin's proposal, /T (éTHE*) is asymptotically normal with

lE g“l, which is approximated by 02§ﬂ1 for

covariance matrix H = g_
'k - large. Hence the variance of the limiting distribution of /E;(—blT—a)
is approximated for large k by

2 2k
(6.7) 02011 _ 02 (1=07)(1-0") 1= (1—042) - ,

5o (107 ) (1-0PEH2)

where 1412 .1s approximately the variance of the limiting distribution of

/T (&le), for large k.
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For other comments about these points, in the case of Durbin's

estimator, see McClave [(1973), Section 2].

a) The role of the truncation points. In Chapters 2 and 3 we dealt with

k, the number of sample autocorrelations. TIn both cases g<k<T-1
for a woving average of order q. |

In the original papers no precise directions were given about how

~to choose %k in an empirical situation. The medification introduced in
Chapter 5 allows for an easier choice of k, in the case of Walker's
proposal. In Mentz (1972) the exact forms of Wi and =9 entering in
(2.6) are given, so that one can easily write down closed-form expressions
similar to (5,2)=(555) for the exact version dealt with in Chapter 2, and
then prepare a table similar to Table 3.1.

In the moving average model the dimension of the minimal sufficlent
statistic is T, +the sample size. By considering k sample guantities,
ﬁhere k is usually thought of as being much smaller than T [cf. (2.33)],
one .is omitting a relevant part of the sample information. This féct
apparently had more important effects on small-sample biases than on
asymptotic or small-sample variances. In fact the proposals, in particular
that of Durbin that has been studied in greater detail, seem biased but

quite efficient for most relevant sample sizes.

e) Corrections for bias, further remarks. In the case of Durbin's

e stimator attempts at correcting small-sample downwards biases, led to
important increases in variances;’both.smallnsample [McClave, (1973)] and

asymptotic [cf. (5.24) and (5.27)]. One way to interpret this fact is
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that as in (d) above, omission of parts of the sufficient statistic led
to losses of information. Some justificationsabout why would the modifi-

cations reduce the small-sample biases are given by McClave (1973).

) Relations with maximum-likelihood and least squares estimation.

Durbin's (1959) way to go from the b,, to &

57 T .is to set up a

l1ikelihood function on the basis of the limiting normal distribution of
the bjT° Similarly Walker (1961) starts by considering the limiting
normal distribution of the ro. In this sense the proposals tend to
approximate, for large T, the maximum likelihood method of estimation.
However, both authors introduce simplifications to make the mathema-
tical details easier. In terms of our discussion in Section 1.4.3 they
both come closer to the least squares procedure, the Jacobian being
neglected. Further the inverse of the covariance matrix is also appro-
ximated. These approximations have no relevance for asymptotic theory,
as we showed above, but may be important in small samples, and may con-

tribute at least partially, to explain differences between them and the

maximum likelihood estimates.

g) Robustness to changes in the distribution of the error terms.

The main part of the theory in Durbin's and Walker's papers, and
in our work, has relied upon the assumption of normality of the error
terms, the e  in (1.1) or (1.7).

There have been so far no attempts at investigating the robustness
of estimation procedures for the moving average model in general. We

may speculate about how well might the presently-considered procedures

behave in small-samples when the probability distribution of the €
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departs significatively from normality,. in relation to other existing
proposals, some of them listed in Section 1.k.

The procedures in Chapters 1 through 5 étart by considering
sample quantities and by leooking at their asymptotic distributions.
These turn out te be normal, a result that holds for a wide class of
distributions of the e, [see, for example, Anderson (1971a) , Sections
5.5 and 5.7.3;. and the cbmments by Durbin (1959), Section 6]. Some. other
results from normal distribution theory are used throughout.

Hence one is inclined to believe that for moderate-sized samples the
proposals might tend to show considerable robustness to departures from
normality in the diétribution of the €, It Would.Be relevant to have

aveilable some informetion about this point, possibly through Monte Carlo

studies.

6.2 Estimation in Moving. Average Models of Higher‘Order.

Our derivations in the present work,.have been restricted to the
first-order moving average. We want to comment here about the possible
extension of the methods of proof to moving average models of higher
order. These were considered in the original papers by Durbin and Walker.

The direct extension of the proof of Theorem 2.3 to the case of
g.> 1 seems guite feasible. The components of the Egg = EEQ(Q) matrix
in (2.4) are known for all g [see e.g. Anderson (197la), Section 5.7.3].
E22(£) will be a Toeplitz matrix with equal elements along its central
diagonals, and zeroes elsewhere; the components of the imverse of such

matrices are given as functions of the roeots of an associated polynomial

(e



equation ind Mentz (1972). It will be necessary to prove some properties
. of these roots, corresponding to lxll <1 in Section 2.2. (In fact
Eag(g) is positive definite, and can therefore be taken as the covariance
matrix of a stationary moving average process; the argument in Anderson
[(1971a), pp. 224-225] that we referred to in Section 1.3, together with
the positive definiteness; will show. that half of the roots are less and
half larger than one is absolute value, as was the case in Section 2.2
when g .= 1). These properties would then be used to simplify the
resulting expressions and to turn them into sums of random vectors whose
order of dependence is a function of k; so that an extension of the
procedure in Section T.3.3 can be developed.to give the asymptotic
normality.

The evaluation of the limiting covariance matrix might envolve
heavy algebra, according to our experience in Section Te3.k.

The proofs in Sections 4.2 and 4.3 relied upon the use of Lemma 4.k,
which implies the knowledge of an exact closed-form expression for some
components of gal, .in terms of the Qﬁ parameters. That could also be
dérived from Mentz (1972), since the roots of the pelyncmial equation
associated with £ can be written as functions of the aj. However, the
amount of algebraic detail in the proof of Theorem 4.6 makes us believe
that the exact treatment of k as fixed will be extremely laborious.

An appreach such as that of Section 4.4 (applied afterwards in
Chapter 5),may be more convenient. The appreach will then provide the
approximate behavior for k -large, of the parameters of the limiting

distributions as T — e, and be based upon convenient approximatiens to
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the compeonents of gml. Note however that Durbin [(1959), Section 5]
‘usihg a-.different kind of argument, obtained the limiting covariance
matrix, valid for large k.

Finally, and as 1t was pointed out earlier, the attewpts at treating
k as a function of T for the proposal in Chapter 4, similar to what was
dbne in Chapter 2, found severe mathematical difficulties, and no complete
proofs are available so far, even for the first order moving»average.’

It sheould be neted that the main difficulties arese in the analysis
‘of the large-sample behavior of M;%g where M, was defined in (4.5) ana
is of order k x k; so that its size increases as Xk increases with Te
In Chapter 2 we faced a similar situation but there the explicit components
of E;;(r) could be obtained, because EEE(P) has only a fixed number of
nenzero central diagonals, the number being a function of g and not of

k or T. Note that MT has all its components nonzero.
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7. MATHEMATICAT DETAILS CORRESPONDING TO CHAPTER 2

7.1 Proof of Theorem 2.1 {Section 2.3).

The components corresponding to the second braces of (2.29) will be
evaluated first. As seen in Section 2.2 the ald in these braces have a
2k
ETJ
factor Xy Ty 1if we treat each summend separately, we see that the larger

. . N i 2 ‘ .
contributions come from terms of the form & k_. One of the contribu-

fg T
. . p 2 2 .
tions is 2r(i-r ) or r~ times
ok, k
kT=l Xl T . ) ; XlT kTml kT“J
(7 = ' 4 - =J _ Lt ) . .
(7.1) jég Tia,T ke A Srgfrd ¥ A Seg B jZi 5,7 ¥1

For large T (and kT) A is approximately equal to h; = a,, a,, -

8o 8pq % 0. Since |rS! <1, for large enough T the absoclute value

of (7.1) is bounded by a constant times

i o kpmd s kSTt
x§%) sl T LT _mgf’ b | & (kp-s)1x 17
(7.2)
< [ a7 ey B llt e ey
- hll gl %1 T ot 1 & 1 ‘.

The condition |X1i< 1 implies that the two series in (7.2) converge,
and hence (7.1) is negligible as T = w. The argument can be used to
show that each component in the second braces of (2.29) converges in

I

probabllity to zero.
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The argument cannct be used with the first braces in (2.29) though,
ke

because there the components do not have Xy as g common factor. We

have to show that
k_-1

J _
Fya,r ¥ T

M

(7.3) plimg, o 0 .

3=1
Hence we have to show that given

€ and & positive, there exists

an integer T = TO(G,S) such that T > T implies thab

kTel i
(7.4) P 5 i1, ¥ip >ep <8 3
J=1 i
here we use the notation Xy = Xy to emphasize its dependence on T

o

~ (through rlm)
Let n be a fixed positive integer function of € and & only;

that will be made explicit below. We have thab

k-1 o
J J A
P QZ rg+13T Xy m > e <P Z Irj+l,T|’X1T| > €
n c 3] J c
{(7.5) <P “Zo Iroi >z b+p 'Z lxlTl >z
. J:'A_ J:]_’l .
n lX ln
iZP]rT|>=—€E)+PllTv>2£ .
j=2 J 2 J “Har
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To arrive at the second inequality we used that [xlT| <1, and that

lrol < 1.
Since plim ro =0 for J =2,5;...,n, there exist integers
Tj = Tj (e,8) such that T > Tj implies that
. € ) .
(7.6) P{II‘J,T[ >;H} <m, J —29“.,,‘11.,
In the second term of (7,5)‘we have that
= o™ %, ol |
p 1T € 1T 1-lo] e .
T2 | 2
l~|x1T| 1-]c] l-lxlT
£
2 {,pJi-lol g,
+ 2 1ol °
2 COLT
(7-7)
¢ L
'§ n
<PYlxor0 > | @-laf) ——{ - lo
1+z
2

L-|xp g

There exists an integer TT = Ti (e,8) such that if T > Ti then

wjo
-

(7.8) e {1X1T+a‘ > e}ff
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because plim x,, = -®. Hence the first term in (7.7) will be less than

8/3 if T > Tiy provided only that

S

2
1+

(7.9) | (1=]al)

> (e + |a])?

POfm

This defines n as & funchtlon of € sand <, independently of T or

kTo

Similérly’the second term in {7.7) will be less than 8/3 provided
T> T (e,8), say. Let T = max(ngaoayTny Tiﬁ T,)s then (7.4) holds

for all T > To, as desired.
kTmli r xi
1=1 i+, T 71T

converge'stochastically to zero. This completes the proof of the theorem.

A similar argument will show that terms like Z
Q.E.D.

7.2 Proofs of Lemmas 2.1 and 2.2 {Section 2.4%).

Procf of Lemms 2.1. Suppose that (2.31) holds. Then limiggm)kT/log T

= + o0, and

{-m log a)k {-m log‘a)kT -n log T

i . - = 11 = °
Time o S Tog T 1 llmT%)w' & Tog T +

This is turn implies that n log T + km log a = log (" aka) convérges
to = o, which is equivalent to (2.30).

Suppose now that (2.30) holds but that (2.31) does not. Then there
exists & subsequence {Tuz u = 1,2;...} such that for every d >0, if

Tu is lsrge enough
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(7.10) log Tu/kTu >d

multiplying (7.10) by n we deduce that for every d >0

i n -
(7.11) log T, -~ nd kTu >0 .

If in particular we let d = (-m log a)/n >0 in (7.11) we contradict

(2.30). This completes the proof. Q.E.D.

Proof of Lemma 2.2. Let 1n and € be positive and fixed. For M >0

we have that

Il

P[IZTIIYT! > n} P{IZTHYT| > s |le <M} + P{lzTIIYTl > 1, lzTI > M)

1 ;
SP{IYTI > IZTI < M} o+ P{[ZTI > M)

§P{|YT| ﬁb—j}} + P{IZTI > M.

But P{|ZT| >M) <P{|z] >M} + € if T is large enough, since by

hypothesis ZT converges in distribution to Zs if M 1is chosen appro-

priately, then PHZI > M} < € too, by hypothesis. For that choice of

M, P{lYTI > n/M} < € if T is large enough, since Y_, converges in

T

probability to 0. This completes the proof. Q.E.D.
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7.3 Proof of Theorem 2.3 {Section 2.4).

7.3.1 Part 2 (Simplifying the mT(j)‘s).

We substitute (2.37) into (2.3L) and find that we have to deal with

R Kpo NK
. = 121) + x i-1 -
Pp = P, (1) aéﬁ (o) p(3-1) + 2 p " m, ((G-L)lzsp =0 (1)
Ky B S /
7.12 = m j-1) r. - )|+ x m. {j-1)r. = 1
(7.12) jg& le(J ) sp = 0 (1) 7 jéi 0,73 1) p e, (1)
Ak

T
* Xy Py (1) .
The two quantities in brackets in the last line agre of the same nature,

and it will be shown below that the first one, normalized by ﬁ?— s has

- a limiting normal distribution. Since the second bracket has a factor

kkT M:T
of XlT and pllmT% © XlT = 0, we see’ that the claim will be proved

Il

Ak
. . e T
if plim. /T lxlTl py(l) 0.
Let €>0 be given. For any fixed = sabisfying, say,

0< n< (1/2)(le| + 1), we have that [o] + 5 <1, and by Lemma 2.1

M{T
(7.15) Vimg, (ol + ) T=o0.

Hence there exists an integer T, = Tl(e) such- thaf if T>T then

l)

XKT
YT (lal +5) % < e. Hence if T> T
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|
hkT ( kkT XkT
P(/T leTl > 7 < P{/T inTl > /T (laf+n)

(7.14)

Il

P |XlTl >|OC| + ny=P |xlT|-|Otl>n

<P +al > q

%)
This last expression can in turn be made arbitrarily small, because
plim Xyp = = &, as T =,

Hence we concentrate on m; T(j)° From (2.29) and the argument
. J

following that expression, m, T(j) is the part of
s .

j 2
(7.15) =) [erarf) (T ¢ g &) + P (@ 4§ 8]
Nk
not having Xqm as a factor., To find the desired limiting distribution

this can be taken as

J
x
1T [,2 a 2 .
- 2r{l-r ){a,.-J a..) + r (-a. .+ 3j a t
alla22 -‘a12a21 22 21 12 11

3 .
DI S EE-(JE-MrE + l) + j[ErB(l-rg) + E;(\/lmhr2-5‘]
(7.16) = - xiT rﬁ

- (,/1-@2 + 1)

. 2 .
J PO TSI S | s A I
1T = 1T

J1<br® +1

1l
e
-
+

8L



T.3.2 Part 3 (Substituting parameters for random variables in the

3 '
mlﬁT(J) $)e
Since I§1| = |a] <1, there exists .q >0 such that lgi*'n| < 1.
Then
kT-l oo | x 3 X :
3~ iT P [ ~
/T 2 (g= X)eg o <F2 = ~ Gy ) g, nf-
J=1 j=1 Xl+'r] Xl+n .
(7.17)

‘As in the proof of (7.4) let us introduce a fixed integer n, to be

specified below, so that (7.17) becomes bounded by

n-1|/ x J x

/T Z NlT - = i (§l+n>3 cj+l}T
J=1 Xt X tn
X0 \J %, \j .
1T 1 ~ dJ
+ /T Z = =\ (Xl+n) cj+l T
j=nj\ x,+1 X, ’
(7.18)
r1 [ [x J X, \i 2 Nl '
- 1T 1 o 23 2
<{ X 7= -lz 2 (xpn) chﬁbﬂ

f . ~ 12

. 0 X J X J c0 .

1T 1 ~ 2 2

+ S - - 1= X (xl-i- n) J T Cj+l T
J=n |\ %, X+ j=n ?

where we have used the Cauchy=Schwarz inequality.
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In the first factor of the first term of (7.18), for any fixed n,

~

from the fact that plim x _, =

1T g2 We conclude that the whole‘factor

converges in probability to zero. In the second factor we note that

/T (ch, CBT,.Q.,CHT) is asyﬁptotically norma;ly distributed with zero
expectations and finite variances and covariances [cf. Anderson (1971a),
Corollary 8.4.1]. Hence the distribution of the sum behaves asymptotically
‘1like that of g linear combingtion of the squares of n=1 normal random
variables, with weights given by the (§l+n)2j° It follows that its

square root satisfies the hypotheses of the Z, of Lemma 2.2, and hence

T
that the first term converges in probability to zero as T 2 .
To deal with the second term in (7.18) we require that |xlT/(§l+ﬁ)| <1,

with high probability. But for = > O;

X
1T %
X1+n
(7.10) > P{ Il < 15|+ ) - P{leT| - 1%l < n}

ZP{bﬁT'gﬂ <n} >1-5,

say, and is arbitrarily close to 1 if T is sufficiently large.

For all choices of T satisfying (7.19) we have that
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o 3 %, \J
P{ Y 1T - L > ¢
J=n X, 9 X1+n
(7.20)
2 [[*p | Ei i° ki ks
<PCL ) =) e | k) ]2y
J=n [\x;+n Xyt Xytn X1

and the second probability will be less than some arbitrarily small & > O.

In the first probability, since both arguments are less than one in absolute

value, the infinite seriés can be evaluated explicitly, its value being

% 2n X 2n
( 1T ) ( 1 )
4 +",q Xa
1 N 1 = - .
X 2 X
1 - iT 1 - 1
Xy X1

Since Xqm EQ;&, this converges in probability te zero as
fixed n. Hence’the right hand side of (7.20) can be made
for T large enough. This shows that the first factor of
of (7.18) is asymptotically negligible.

In the second factor we apply Chebyshev's inequality.
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arbitrarily small

the second term

For any € > 0O,



T o~ . \2] 2
% \ L Grn)™ TE g

' ~ . 25 . 2 j=n
| P 'z (xl+n) T Cj+l,T >e) < 5
j=n €
0.0}
~ 2(j-1)el
== 2 (x+n) Er= Y V. Vi TV
¢ omtl T S t vt+j s s+]
(7.21)
1 o 2(3-1) 1
== ¥ E@A)I = ¥ LGl tae )(e . +Oe . )
62 j=ntl 7 | T &5 t t=1’""t+] t+3-l»
. o °
(es-+aesml)(es+j+- €s+j-l)

The - expectations vanish unless t=s, t=s~l or t-l=s, because the et’s
are independent and have zero expectations. There are less than 3T such
nonvanishing expectations, each one of which is bounded by the same constant,
because the et's are normally distributed. Hence the absolute value of

(7.21) is bounded by a constant times

~ 2
|Xl+n| "

1 v >, 2031
€ j=n+l T 5 (lmlxl+nf )
This last expression defines the choice of n, as a function of &, ¢,

etc., but independently of T and Kk go that the right-hand side of

T)
(7T.21) is made arbitrarily small.
This completes the proof that (7.18) converges in probability to

Z€Y0.
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7.3.3 Part 4 (The asymptotic normality).

As in (2.43) let

1 &
T~ = Wy
JT t=1

(7.23) Q o

where the W, are defined in (2.44). To develop the asymptotic theory

1

s
T
and in order to simplify the calculations, one can take as definition of

the Wypts for all &, t=1,2;...,T, the first line of (2.44). There

would be ké/z extra terms added in the sum over +t, but this is

asymptotically negligible compared with the existing Tk, terms, since

T

¥)

k;/T 30 a8 T % . Hence we take

k‘.
m(j-1)
(7.24) W= 9 =59 (y, ¥ . ~EY, ¥o.:)s t=1,2,0..,T,
T fry g2<lﬂ12) t YE+] t Yt
and
: o
Mm(=l) = = =——
lﬂlg ’
(7.25) .
- 2
. o~ E o 3 2 i p . .,Lma .
m{(j) = Xi €l+3‘/lm4p ): (4%)3 1+] 51, d = O;l?...,kTml .
14

(7.25) can be written more compactly as m{j) = S§ (ma)j[1+j(1~a2)/(1+a2)]

where 8§ equals % when Jj = -1 and equals 1 when J = O,l,.,,,szl.

Taken as s stochastic process, {WET} is weakly stationary, has

zero expectations, is finitely dependent of order kT+l, and finitely‘
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correlated of order 1. The dependence follows because Ws depends on

T

Vgooee oV , while W£+s,T depends

T

) and hence on et*lfftff§t+k

. T
and hence on

e't-!-swl” oo ?€t+S+k -

The correla=-
T .

tion argument follows because

kT ' kT
EV. W -1 m(5-1) m(3'-1) EW,T, . .~ EV.F,. )
tT “t+s,T [gy(o)]g jgé jfzg . tUt+] EW{ B+

(VireT gyt = E prsTtrgsjt )

kp Ky

(7.26) -z j=1) m(3'-1) d. ., (s)
[O‘y(O)]2 jgo jrgo m(3ed) m(3'-1) (S.

!

Koo g

- 5 2 2 n(j-1) m(3'-1) djj,(s) .
(urofy  9%0 J'=0

Here  EWyVins Yiug Tirsey ~ EVVert B prVpisty) = © d;;(s), and the

dij(s) are given by
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a3 4(s) = 2(107) s=0, 1=3=0,
- 1430240 s §=0, i=j=1,
5 2
= (o) 5=0, i=3>1
. 2 .. (
= 20 (1+”) P 5=0, (19J) = (O:,l) or \lﬁo)ﬁ
2 il e s
=a(1a”) s=0, [l“’JE:lﬁ (i.3) I'é (0,1) or (1,0),
2 . , o s
= 20 P - §=1 (-‘l)y l:J:Oﬁ
(7.27) 5
= O P s=1 (“‘l>y i:cj>o?
- | : e :
= 20{147) 5= (-1), 1=0, J=1 (1=1, j=0),
, 2 . . . » R . .
= o) s=1 (“"1>9_ i=j-1, 31, (i=j+l, 3>0),
e . . . .
= X, s=1 (“"1)9 i=0, j=2 <1=2: J=O)3
2 . . . . R
=0, s=1 (-1), i=j-2, 32 (i=j+2, J>O>9
= 0, all other possibilities.
To prove (7.27) we write Vi = € tOe , for each index t, enumerate
all possible cases, and use the fact that the et’s are independent, normal

and have zero expected values. Alternatively one could use formula (8.18)
in Section 8.4.2 directly.

We proceed now as in Anderson [ (1971a), pp. 538-539]. Let {NT} be

a sequence of integers (functions of T) such that kT/NT 20 as T <

Let M, Dbe the integer part of T/NTo Then . is asymptotically

L

T

equivalent to
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=

. T ,
_ 1 -
(7.28) — ; (ij + YjT) + Ry,

Il

Even for finite T, the approximation problem is minor because NT/T

-may differ only slightly from l/MTo In (7.28) we defined

Nk

_ _1 - . . '
. ZJ.T — N ._.l W(jm:'-) NT‘I'igT 3 J—lygﬁooo;MT ]
V=7 - _ '
; l\TT
(7.29) , YjT - S w(j 1) N.4H,T ’ 3=1s250 005 My
JN . i=N -k_T+l’ AT T 2
T Bl
R =W +ge.+ W ;
4 ,
T Ny MT 1 T

fhe lasﬁ definition is wvoid if NTMT = T; in which case we set RT = O.

‘We first show that the terms involving the random variables YjT and
‘ RT converge in probability to 0 as T = w. To do so it suffices to
prove that the corresponding second-order moments converge to 0, Dbecause
the expeéted values are zero for each T. This corresponds to proving
mean-sqﬁare conVergence fo O. Now

A R T *
W

: 1
Y, = mm——— ‘ W. . Wy e
gl JT . MTNT 3 ;%9 =1 s,s' :NTng_I_l ¢ JNT “kT.""S PHR R NT-kIIl'l's’ > T

|

L
VAT

g f
: {Wgﬂli(‘ .
(7.30).
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*"Ss

I U;ég” the expectations vanish, because then the corresponding

W's are independent, thelr subindices differing by at least NkaTo For
j=j', the expectations vanish unless |s-g’] <1, because of (7.27).

Then by stabtionarity of the {WtT} process, (7.30) equals

M. ko=l K =2
Y IY' e + 2 J‘zgw W
S—— 5 pad
U, 2 &'y A M Yor
(7.31)
3 Kk D
"T\TET” &y + 2 T, €W p Mop 5

which converges to zero as T =» » since, by hypothesis, kv/l\T_ =2 0,
That the second moments in (7.31) remain finite as T »w follows from
(7.26) and (7.27), once we note that the m{j)'s are exponentisl
funetions of O, and |Oti < 1.

The same kind of argument can be used with R;:

[

1 1 o
g R T EW . teoo WI]‘I"‘)
{7.32)
~ 3N
: e T
gwi 2N @l Wl < 5W§T’

and this tends to zero since, by hypothesis, NT/T tends to zero as

T =% o0 .

95



It follows :that it suffices to find the limiting diétribution of

(7.33) | | Q

H %

Al

Yo
J'gl L

where by construction the ZJ.T“S are independent, identically distributed,

and for all j and T, ngT:

E

5Z§T = N; [ T)ng + (Wp-kp-1) 28W ET]

(7.34)

Il

e 1T 2T ’

et oo

T
If we now write (7.33) as
7., M

JT = €74y 3

we have that & MT Z2., =0, 5(2?51 ZE.{T) = 1.

J=1. JT

R

HM!_F.'

(7.35) ok = (E75,)

We want to use ILiapounov's
Central Limit Theorem [see Lodve (1963), Chapter VI]; for that it suffices

to prove that for some & > 0,

(7.36)

",
3 Elyl2 o
=1

.~ We choose & = 2. Then

oh



(7.37) et - =L — 7

o j-——?lg T ¢ E >z €M
w €25, Mp(@z)

where

| )y N NT;FT
14 2 4 P ! T W
(7.38) Chip =5 L&MWy Wap Wy W s
NT bs8,9,v=1L

and it Sﬁffices to show that (7.37) converges to zero as T = w, or (more
strongly) that (7.38) is bounded uniformly in T.
Note that a fourth-order moment of W includes the expectation of
a product of eight of the ¢'s (in particular that of €8 when s=t=g=v,
and J=0 in the definition (7.24) of each W); since the €'s are normal,
these eighth-order moments are finite. If instead we did not assume
normality of the ¢€'s, some sssumpbion about their eighth-order moments
would be caglled fer. In any case, any fourth-order moment of the W's
ig bounded, uniformiy in T.
To arsiyze (7.38) we consider separately the following five cases:
1) t=s=q=v. There are qukT terms 5vﬁﬁﬁ so that their

contribution is negiigible as T = .

2) t=s=qév. There are h(mekT)(mekTul) terms of the form
6ng W o SO that their contribution to (7.38) remains
bounded as T = w. Nobe that %(jfka)(NkaTml)/Né converges

to b oas T =% .
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3)

)

5)

(7.39)

(N_-k_-1) +terms 5w§ W

t=s#q=v. There are 5(NTHKT)‘ ok T Wor?

so that their contribution is also negligible.

v=t, t#s, tfd, sZq. There are 6QNT~kT)(l\.kaTml)(l\TkaT-Q)

such terms. Let us consider the subcase t < s < g, since the

other ones gre tregted similarly. If |t=s[ > kT+l’ WiT‘ and
.WST are independent and the expectation vanishes unless

|s=q| <13 there are at most E(Nmka)(kT+l) such terms.

41, then W2

If | t-s| < Ky o7

and WST are not independent

and the expectation may not vanish if |s~q|’§.kT+l; therel

' 2 2
are at most (NT-kT)[E(kTJrl)} = u(NT-kT)(kTﬂ) such terms.

All subindices differ. There are (Np-kp)(Np-kp-1)(Np-k;-2)

(NT-kT—B) such terms. Consider the subcase v<t<s <gq,
since the other ones are treated similarly. By definition

(7-24), and recalling the Vi = & tOe we see that (7.38)

t =1’

is .composed of terms equal to a constant times

,NkaT kT

)3 Y om(-l)m(3t-l)m(3r -L)m (3" 1)
58,0, v=1 JoJ',3'',3"t'=0

ol

gev €'V'+j Et €t+j' ES es_l_jn eq eq+jv37}- = g(ev. €V+j)_

g(et €t+j‘) g(es €S+jn> g(eq €q_|_jf” ) )

plus other similar terms with some of the subindices, or all of

them, reduced by 1.
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Tn (7.39), if j#0, then e, and €y BTC independent, and
since 5€V = O the contribution vanisghes. If J=0, but j'#O, again

we have & zero expectation. By a similar argument we can see that only

the case j=j' = 3" = 3™ = O remains to be studied; but then we have
that

o e 2 2 2 2 2.2 .2 _2

(7.40) g(cv €L < €q) - Ee, £e &e g, = 0 .

For the other terms with subindices reduced by one, a simllar agrgu-
ment applies if wv,t,8, and q differ by at least (say) 3 units.

Hence it suffices to show thet in terms like (7.39), when v=t,
!tQS! §=kT+l’ !qué ika+l, t < s <q, the corresponding contribufion
to (7.37) tends to zero as T o, In the analysis of case 4) gbove we
sargued that there are at most h(Ngka)(kT+1)2 sach terms. Now, by the

Cauchy-Schwarz inequality, the expechaticn part is bounded, for sll

choices of subindices, by

o 2 ) .
{7.41) <§e§ + @%eé) = 105 58 + gB = 106 58 s
so that the Cbntribution is bounded by
, 8 L M(NTEKT)(kT+1)2 oy 4
(7.42) 106 o s 5 > om(3-1)f
2 N, J=
M (BZ] ) T

which is asymptotically equivalent to



8 2 Mk I
holi o7 (N =k, ) (k +1)° | °T . 2
(7.43) LTI 1S 8% jofd (132 ;
&z° )2 TN j=0 9 1+0F ’
1T T

in turn this is equivalent to a constant times

(7.44) e

Recall that ,6§ can equal only 1 or %,, Since ki/T 20 as T = o,
and the sum over j is finite because |@] <1, (7.hL) tends to zero
as T » o, which 1s what we wanted to prove.

From (7.34%) we see that

. -
(7.45) Limg, €%y = limg,  @W, + 26 W) -
By Liapunov's Central Limit Theorem we conclude that (2.43) or (7.23) is

asymptotically normglly distributed with parameters O and 1 given in
(2.45).

Note: From the préof above it follows that random variables like (7.23),
which are (normalized) linear combinations of random variables finitely
dependent of an order (kT+l in our case) that increases with\ T, are
asymptotically normal provided the rate of increase of the order of
dependence 1s adequately smaller than T(k%/T % 0 1in our case), and

that the weights (the m(j) in our case) are summsble.

98



Recently Berk (1973) proved a theorem that deals with a similar situation.
This same suthor [Berk (197L4)] used an argument paraliel to that used
above to prove the ssymptotic normality of the autoregressive spectral
estimator; in his cage 1t turned out. that he needed kg/T 20 (in our

notation).

7.3.4 Part 5 (The asymptotic variance).

We first note that

00 . - 00 . O£2 0 . 2. ag
(70 L"6) ,Z aEJ = - .J.2 9 ﬂz Jagd = -'—mé- 9 qz 320623 = quJ;i‘-gl‘ o
Next
0.2 W2
R = (07) EWg
K B )
=} 2 m(@E-1)m(3a1) a4, (0)
j=0 J'=0 ‘
;o ¥
= m~{j-1) d4,.(0) +2 m(j-1) m(j) a, , .(0)
j:O e.] J j___O cJ J J+l
k
2 2 T 2
(7.47) = m"(-1) dy, (0) + n™(0) dll(O) +dy,(0) Y m (3-1)
: j=2
k =1
k=l

t2m(-1) m(0) ay;(0) +28,,00) § m(3-1) n(j)
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2 2 2 k

i
= _22_ 2(1+042) + (143 a? +ocu) + (l+062) Z mg(j-l)
14 i=2
k-1
-2 —3‘5 20 (140°) + 20 (10f) ¥ m(3-1) m(3),
1 J=1

which converges, as T > «, to

1402 +a + (0®) FrP(e1) + m@e?) © m(3-1) m(3)
j=2 j=1
2 2 o
-1 40 +06)+ - (1+O£2) m2(0) + \('l+0te) Z mg(j-l)
j=1
(7.48)
f m(10?) § m(3-1) n(3)
i=1 o
2 0
- 20?4 (1®) y me (§-1) + 20 (1402) m(j-1) m(3) .
j=1" J=1
Similarly,
5 2
Ry = (1407) &Wp Wy
»kT K ;
= Y m(§-1) m(j'-1) d.., (1)
j=0 3'=0 I
k k=1
T o < . .
= jg_ m"(3-1) 4,,(1) + jgo m(3-1) m(3) a4 4,.4(2)
kT-2
(7449) + j‘go m(J-1) m(3+1) &5 5,,(1)
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k

> T o
= m(-1) (1) + a4(2) .Zl m(J-1)
; J=L4
kT-l
+ m(-1) m(0) d,,(1) + a,,(1) }jl m(§-1) m(3)
o E J=
lgT-E
+n(-1) m(1) 4,(1) +a,4(1) 3 m(§-1) m(3+1)
MoA
k
- _O‘§ c e ZT m?(j-,l)
1+ 3=0
+ (—'—0‘2 206_(]_+o¢2)‘ + a(vl+0'62), % m(j-1) m(j)
1+ 3=1
2 kp=2
- [ =) (1 * 1-a2)2a2 R ERIEIEAN
1+ : 1+0f : J=1
4 n 5
LR Y Ry
(1+0°) (1+07) s
k -1 k -2
2, & o &
Cro(10t) ) m(3-1) m(y) + o7 ) m(g-1) m(3t)

J=1 j=1

which converges as T = o to
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n ©
6a o) 2
5 -2 +a Y

(1407) J=

(3-1) + o(wef) T a(3-1) aly)
p

(7.50)

Hence R. + 2R, converges as T oo to

1 2
L o0 5
- 50% + b 3 w(5m1) [(10P) + 207
(1+07) 7L
+ ¥ om(3-1) m(3) Cho(1e?)]
j=1
(7.51) | oY m(5e1) m(3+1) [202]
j=1
L ‘ o
= =508+ 224 (1?4 ) § aP(y)
(140°) J=0

Flo(190) S m(3) m(341) + 202 m(3) m(j42) .
5=0 3=0

Next we evaluate the following:
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) o0 . 2\2
Y (3) = ¥ o (1+,j .1“0‘2)

3= 3= 140
o0 2
- z OLQJ + o ]_--Oé2 062'3 + l-—Oée X J2 QEJ ;
J=0 1+ g=1 1+ j=1
3 ; 23+1 1 ol sany 1=
Y m(g) m(3+1) = § (~)797 |1+ 1H(j+1) <=5
J= Jj=0 1+
2
i . 2 2
(7.52) D R | IR 042 + 3 052 1+3 < O‘Q
J=0 1+ 1HY 1+
0 % 2
2, . l—a2 2 R e
=-a ) w() o=} o hry==5]
J=0 1+~ 3=0 1+
oo o0 2 2
\ . : 2j+2 . 1-0f . 10
Y om(3) mg+2) = 3 o hey =5 f1(ge) 5
J=0 J=0 1+ 14
2 g 2 2102 T 23 1-07
= o Zm(j)+206——2— Y oY 1+ AR
J=0 e =0 1+

Using these values the last line of (7.51) becomes:

L

50f + 122 5+ (L+h o +at) ) n(3)
(1467) : =

140f 520 140

+ b 1407) |- @
J

co 2 < N
mg(j) - 1o _l—-fgé_ z agJ l"]j'lia—
=0
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(7.53)

-+

..'_

1224 Y 5P(3) [avke? + o - woP(1df) + 20t
(1+02) J=0
c 23 1-0f b 1-0° o
Yy o 1+3 5 4o (1=a ) + ho’ =5
3=0 1+ 1+0
120 5+ (1-a2)(1+042) ofd 4 o A2 z Joc
= 2
2
2V¢ w . o, 2
1-=oc2 B 32 Bl _ 1-=<;c T o
1) 3=1 1+
2
10! 2
2 y o
146° j=1
i % 2
o
% o 2
-
Y0P |a(1df) - w” |5
J=1 1+
D
& 2 25 (10F
5 202 1
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t

4 20 . 2.2 by o .
502 4+ —120 - (1-a2 § oA, 2l0") (l;a) T 5P
23w
. gl—oa22 5 Je o2
(7)) j=1
3 2
52 4 100 , (10F) 1 2(1-07) (140 of
2.2 140P 1-0° 2.2 2.2
(1+07) (1+7) (1-f
+ Ll-oce) a2(1+oz2)
2 3
5 it 2,2 002 L
-5042+ 1ag+(1-042) + O‘(lﬂg+o¢2
(1) T (1+07)
2 2.2 22 2 4 2. )
_ (=507 +aT)(1at) 4+ (1-07) (1+07) + 1207 + 205( 1)
- 2
(140F)
3
3 1-5042 + 5@” - a6 _ (1-042)
) 2
(1462) (1467)
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8. MATHEMATICAL DETATLS CORRESPONDING TO CHAPTER k4.

8.1 Proofs of Lemmas 4.2 and 4.3 (Section 4.2).

Proof of Lemma L.2.

) % _ e %) _ ‘
We need to show that pllHﬁL§m(l/T) Z$=1 (zt gzt) 0. Let us

write T = mptr, where p and r are integers and O < r < m. Let

also z, = zi - gzz. Then
T m p=1 T
1 1 1
(8.1) =5 z < § = z, + = Yy =z
- +
Tlese *) ~ 520 Tlezo 97| T ly—pmen ©
m p=1 LT
S % z s % 3+sm " % z Zt ’
j=1 Plg=o I t=pm+1

- (If. r=0 the second term in the right-hand side does not exist). By
hypothesis, in the first sum of the last line above; and for the j-th

Dt

subsequence (Jj = 1,2,...,m), =0

. zj+sm/pi is arbitrarily small if

p is sufficiently large; if each of these summands becomes bounded by,
say; nj>>*O, then therwhole term is bounded by 10 = magj nj. In the
second sum there are at most m summands; since each subseguence con-
verges by hypothesis; each term ,Zsl is arbitrarily small if s is

large enough, and eventually lzsf < 13  then the wheole sum will be bounded

by (m/T) n < 1. This completes the proof because 1 is arbitrary when T

can be chosen arbitrarily large. Q.E.D.
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Proof of Lemma 4.3.

From (1.12) we see that for fixed i and J the random variables
zt = ZJC (1)3) = y£=i yf—j’ have common expectation. Since et is
normal, it also follows that Var(zt) is finite and does not change with

te Let us consider 1 < j, Dbecause the same argument holds for i > Js

zJG depends on €t~j=l’ et—j’ et—i—l’ and et—i’ while Zt+s depends
;1 [ > 5-1+1 4

on €t+s=j—l’ €t+s-j’ €t+s—i-l’ and €t+s—i’ if lsf g=i+l hen Z,

and Zite are uncorrelated. It follows that {Zt} is a sequence of

finitely correlated random variables, with finite common second-order

moments. By Lemma 4.2 the weak law of large numbers holds, and shows

that
0, - g
(8.2) pli. = z, =&z, o
0 Ttk ¢ ®

This result, together with (4.10), completes the proof of the lemma. Q.E.D.

8.2 Proof of Theorem 4.1 (Section 4.2).

We have that

k-1
. iZO (plimy , byp) (p1imy B4y )
(805) pllﬂ')T%w aT = = -1 s bOT = 1 3
Y (pii b )2
. B 00 04
i=0

since all relevant plim's exist. The numerator of (8.3) is evaluated

as follows:



k=1 . . : a2 s s
(8.4) 3 (-7 (-1t QP (1:07KTR)  (10PHTER (1 PR
;A=

=2 k=1

. + 2 ? - o
- a(10PERY Y (P L oPE L PR o221y
1=0
2k+ - o+ -
- o 1-0°K2) 1 oc2 = <2 2L SN S 1{@2
' 1-0f 1-1/d

-2

-a( 1mo¢2k+2) ( 1k=oz2 ) ™

il

[(1-0P%)(110P5™) - xoP¥(1408)(107)] .
. The denominator of (8.3) is equal to

s 2 k=1 mns 2
(805) . (l=-o¢,2k+2) X 0621 (1'=-052k+2 21)
i=0

2 -1
252y 2y [(lma2k)(1+a2k+6) o a2k+2(1—a2)] .

The. first line of'(4.9) follows immediately and the second line is an

algebraic rearrangsment of termse.  QoE.D.

8.3 = Proof of Corollary 4.5 (Section 4.2).

The right-hand side of (4.9) is (by long division and appro-

priate collection of terms)



(8.6) o+ a2k+l( 1«042) [044— k( l%ozg')]

2
1-0°)[-2k%0°(10F) |

hg+1
P A ,
(lma2k)(l+a2k+6) _ 2h32k+2(1~a2)

a”k+1( k10 1

l—a2.){=alo + k(l—ag)(3046m1) + O 1-=~oa2)oa6]] .

+

The denominator of each fraction approaches 1 as k —> e QeE.Do

8.4 Proof of Theorem 4.6 (Section 4.3).

A e
8.kl Part 1 [Asymptotic normality of /T'(BT—E*)].

In the notation of Section 4.2, g* has components

j = l;E’aDQ,K 5

* _ g 1=C
(8°7) BJ = (_O‘) Ok+D J

in fact we will want to extend the range of (8.7) to include J=0 (53

and k+1 (B;+l‘= 0). Since 02 = 1 we now have that

Il
[1s]
il
Q
[¢]
A3

(8.8) gET

where € = (1,0,04+,0)", and

it

(8.9) g, =P=%,

g0 that é = -yt and- B* = - Z?l Then
NT NT I'ET ~ r~ .g.l. -
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ST (Bp-8%) = - T (0'm, - 2709)
(8.10) = -/T {[z + g -1 g + (mp-a)] - g“lg}
-1 1,7t -1
= -\/"F{Z [I+ Mp-2)2 7] [g+@my~q)] -2 %}

It is easily checked that if I’ + A 1s nonsingular

(8.11) (@)™ = I-av @+ A

.

For A= ( '-g)g'l y I+ A=M, g'l is nonsingular with probability

~

one because M. has this property (see Section L.1) and % is also non-
singular. (In fact L of any order is nonsingular for any value of &,
while the condition |Oé| <1 mekes % of any order positive definite).

We deduce that plimg . (llLI”E) =0 (Lemma L4.3), plim

oo (I + é)-l = I, and that [T A has asymptotically normal components.
-1

[See e.g. Anderson (1971a), Section 8.4.2]. Hence plimTz%oﬁ (I+A) A" = 0,

o~

T3 o0 A=0

plim
and (8.10) has the same limiting distribution as

- ‘/"T"{g"l[y (M. - g)g“ﬁ[y my- )] - g“lg}
(8.12)
- -VE{Z My -0 - B e- G- DR Gy -g)]} :

Since ﬁ (MTmé) has asymptotically normal components, and
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plimT-;oo(LnT- a) = 0, the third summand inside the brackets in (8.12)

is asymptotically negligible, and (8.12) has the same limiting distri-

bution as
(8.13) VT @y -a) + (M- B = - /T 27 (g, +  BY)

8.4.2 Part 2 [Asymptotic covariance matrix of /T (IET + M E*)]

We now evaluate (4.26). Using (8.7) and (1.7) we have that

k k ho] :2k+2-2h
(8.14) E 5* E (<) ————— [ ¢
\ N + -
e h “t-h Koo 1 :2k 2 t-h

~(0)ep ]

k
- __:QLEIé‘i L <_a)h[et-h"('o‘)e:t-h_l] |
1-& h=0

k 3
k+2 k-h {
_a Z (_a> [et h_(_CX)et_h_l]'F
h=0 :
1 { k+1 k+2

= —— - -
2k2 | %t ()™ &y (1)
- .

1

" .
[ (-a)® Gt-(-oc)et_<k+l) + (1-07) hgl(-@)%_h et-h_]}
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' : k+1
1 :2k+2 k+2 2 ‘ k-h
= Ok+D {et (l ) = ('OC ) L (l" ‘Oi ) Z | (—OC ) €t -h }

L h=1
; k%%
= '}’ E ‘9‘

wo Bt

say, where
oy, k2, \k-h

' _ o (1of) o)t ~
(8.15) Yo =1 7y = - S Ee h = 1,2,...,ktL .

“Hence (L4.26) reduces to

T - ki% ,
, 7.7 E¥, i€ V. € ), 1<i, J<k .
¢, t5k+1 h,nioo D BTTTE-LE-RTs-js-h

(8.16) Timo oo

=11 d

We have to evaluate . the expectation, hamely
AT (y, . € = _+de, | i .
(8.17) &Gy ;& Ysoysnr) = ElSpst €1 (o g% 31 % nSsn

= ,‘+Q', . €
Eleg 1% n% 3% mr T %1% ns-3-1%n"

+ 2 )

a € f T+ Q €
F€io1%-n"s-3 s’ €4-1-1%-h"s-3-1%s-n’
Let {Ge(s)} denote the ¢ovarianée sequence of the’ et's, so that

Ue(s) - 6° for s=0, and equal to O for s#0. Since by hypothesis the

€.'s are normal, we have that [see for example Anderson (1971a), Section

8.2]
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(8.18)  #ley 1% 3% mr) = (0% n s tr1gsoteinr)

= Ge(i—h)ce(h'uj) + Ue(s—t+i-j) Ue(t-s+h’-h) + Ue(s-t+i-h')

o (t-s+j-n) ,

where

(8.19) Ue(i-h) Ue(h'—j) = Gu 5 i=h and j=h', for every s and t,
Je(s-t+i-j) Ue(t-s+h'-h) = o” , h'=h+(j-i) , for s-t=j-i=h'-h,
Ue(s-t+i-h') Ue(t-s+j4h) = Gu , ht'=j+i-h, for s-t=h'-i=j-h,

and all otherApossibilities vanish. Proceeding in a similar way with

the other three terms of (8.17), we conclude that

h . <
(8.20) 5(yt-i€t-hys-j€séh‘) = ¢ , 1i=h and j=h', for every s and t,
b . .
= Qg , i=h and j+l=h', for every s and t,
or i+l=h and j=h', for every s and t,
2 L

=070 , 1+l=h and j+l=h?, for every s and t,

h'=h+(j-i) for s-t=j-i=h'-h,

11
q

or h'=j+i-h for s«t=h'-i=j-h,

Og'y, h'=h+l+(j-i) for s-t=j-i+l=h'-h,

or h'=i+j+l-h for s-t=h'-i=j+l-h,
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or h'=h-1+(j-i) for s=t=j-1-1=h'-h,
or hf=i+j+l-h for sftzh'miwl:j-h,

s h'=h+(j-i) for s-t=j-i=h'-h,
or h'=i+j+2-h for s=-t=h'-i-l=j-h+l,

o, otherwise.

Note that in the last three equalities, t and s are restricted by
conditipns such as t=-s=i-j, t-s=h-h', or the like; hence there are less
‘than 2T (k+2) nonzero contributions and as T = « their total contribution
to (8,;6) remains bounded. That is not the case for the first three
‘equalities though. We analyse these first. Let us take gz: 1l again.

The contribution of the‘first three lines of (8.20) is T times

2
( o
(8.21) 7iyj + ayiyj+l + ayi+175 + O /i+175+1

24\ ,2kt+2 r e fe L s fs e
— (l-a )a’ 4 (‘_ﬂa)m (l+ej ) + O (_a)n (1'+J+l) + (_a)g(1+z]+l) + ag
1432k+2 * .

(m(x)'(i+j+2)}; -0 .

For fixed i and Jj, j > 1i, there are T-(k+tl) + 1-(j-i) cases
vhere t-s=j-i, and similar numbers when t-s=h-i, etc. Hence as T = w
such numbers divided by T tend to 1, and hence for j>i (8.16) is

equal to
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. kHl-(3-i) min{k-(j-1)+2,k+1}
6.22) o) b M) T (3-1)) BBH(-1)-L

h=0 pemax {02 -
k-(3-1) _
- bl R 1); Tn’iegn T g7h71+j+1-h

2
i g7h71+j+2—h :

The sums in (8.22) are evaluated as follows:

]2
=4 - - (-1 k+2 .
(6.25) k+1 fj 1)7 , s k+l-(j-i) (102 0P (_a)-é‘h—(a-l)
) h=0 h'h+(j-1) 0’ j-1 w5 1 okre
2 2 N\ k+1-(G-1)
=y, . L {1om) (a)2k+4-(j~i)~ y o2 (k-n)
It (10242 )2 ' hel
(l_ae)g o4+ (5-1) l_a2k+2-2(j-i)
=74t g (@) J 5 , >t
| (1025*2) 10
2
kra-(J-1) (1 -ocg) Sk+1+ (§-1i)
(8°2u) Z 7 7 « . =.\‘.7 - F ————— (_.a) J 4
£ h'h+(j=i)-1 Jei-1 2
h=0 (107%72)

1 oPkH-2(3-1)

2
10°

J>1i.
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2

kt+l-(j-1) 107 e o
(8.25) % "Wne(g-i)-1 7" <% : 5 () 5 i‘??-’ =t
h=1-(j-1) : (1-062k+2) o
k-(3-1) | (14%222 2kt3+(3-1)
(6.2¢) h25 "nPur(g-i)a T gy T o 2 )
= | (127 7)
1 o2k-2(3-1)
° s s J Z 1
10

In the fourth sum in (8.22) we have that O < i+j-h < k+l if and
only if i+j=(k+l) <h < i+j, so that the sum is

min{i+j,k+1} i+3

B2 Y 5 S i+ < k+l
hemax(0,i+j-(k+1)} D 1HR 5 Thiti-h
(8.27)

k+1

I

Vipey » 143> kL.

Y P
=it (k1) &

Using the same type of argument we are led to evaluate the following

sums <

kel - (1+3) (127)
2 5
-062k+2)

i+j ;
T - s s _
(8.28)  } 7w i+5-n 271+j+(1+3 1) (-a)
h=O (l

i+j < k+l .
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2
k+1 L
(8.29) i 7y = (k43 ) = (14) ] (=0 ) - (143) _ao®)

h=i+j-(k+1) hii+j-h (1agk+2)2 ’
i+ > k+l .
_ 2
\ B e hk+3-(1+3) (1.042) .
(8'50) Izlyhyi+j+l_h = 27i+J+l+(l+J)('a) » '__2—1{.{_2_2 s 1t i k,
RREE
' 2
: : L. 2
= [(2k+2)-'(i+j)](_oc)uk+5'(1+3) -—ﬂ“—'oi—)-—— itj >k .
' oK+, 2 ’
(1 )
2
2
. L hk+2-(i+] o' .
(8.31) g7h7i+j+2-h =,2yi+j+2+(1+3+1)(.a) kt+2-(i+j) _@_2;;_ , i+j < k-1,
(1 )
2
: . 2
= [ (2kt1)-(1+g)] ()@= (43) Q7)o iy
2k+2 2’

Note that as in (8.21),

: 2
(8'52) 7i+j + myi_l_j_l_l +0 7i+j+2 - o M

With this background we now find fi‘

i1 and fij2 to use in (4.27).
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2 2 | 2k+2 2 2
(8.33) f,,, = (1@ >{7O+< L) (@) -1-:-3-5—} { < 2k+2>

2k

. ok 2
(»-oc)g]’§+5 ————l“ag }+ {71 (s )(=Ot)2k+5 l'ag

10 2k+2 1.0

1 -062 2 062k+2

- (1407 )40 7l+<1,a2k+2)' ~— {(1a2k+2)(1+oc2)+goc(.a)(1_oc2k)}

" ok+0
(1402 4252 ———lgk'+2 {2+(1=oc ) ~—-——-———l+a2k -5 }

. 2
@34) £ 1,0 (1a)y oy 1oy, = - I%d—gm(-afw
((0?) (o) e ()8
—a - PR (_a)gk;“é
l_d2k+2 .
(8 55) fl i+r,l - (lﬂ )7r+a7r-l+a7r{rl T Ot 2 lﬂE
: f(‘l-@ k ) ‘
:O, ) » ’ r.-: 2;53.«-)1{_1«:
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2
107 Bk+l 3k+3 2 3k+2
(8.36) £4p = @7 oy o - {(k--l)(-a) TR0 (00 )7 740 (k1) (-2 ) }
BT S {2+L«a(-Ot)'l' (2 papfie 1A
10752 1.02k2 7
2 2
B 10 3k+43 3k+2 2 5k+l}
(8"57) fij2 - 27k+l + (l_a2k+2) k("a) +2(x(k+l>(-a) +a k("a>
2 2 2
10 k+1 1-0t 3 (k+1)
= -2 = () T+ (—===) (-2) (<)
L K72 1 o2K+2 ,
2 2k+h
- () 200 (A2 —1, i+j=k+l .
(1-02E2)

By the same type of substitutions it is easily verified that
(8.38) f..., =0, i+j <k+tl or i+j > k+l .

ij2

Since F 1is symmetric, this completes the proof of (4.28) and (4.29).
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3.4,3 Part 3 [Asymptotic variance of /fiﬁiTAI*)].

Using (4.30) we first evsluate the partial derivatives to be used in

(4.31).

’ k 2
(¥ 8% Vv p¥
o ‘Bjml j+l’i:O ﬁl Z B1 i+l
(8.39) == - 55 s J = 1,250005k
P *
3 (} B;)
1=0

where from (8.7), BZ

k-1 B*Bl+l Was-evaluated in the proof of Theorem 4.1,

1 and Bk+l = 0,
The sum 2:

and a similar calculation shows that

Kk _ : N .
(8, MO) z — (lﬂ2k+2>=2(l-a2)ml[ (l-—agk2)(l‘l’dgk—,—h)m2(k+l)a2k+2(l-ag)}
Hence we hzve that
% kL2 -2 . Y . Ok =23
NPy 6 fie) LB M2y () (o™ )
3 4=0
k 2 B} _
2 g% 2 () 1 a”KEE) Z g Baﬂ}
j= j=
(8.41)
. . -2
e et _a2k_+2) {(1 _a21<;+a><1+oﬁ2k+u>_ 2 (k1) (1 o )a2k+2}
[ (03 (P (P 220) [ (10P2) (105 202 06°)

o252 o ()3t (1 0PE 220 1 aPF) (1 02Ky 6P au)]}

2

j =1 2k+2=2] 2 )
(<0t)?™ (1o Iy (@-a®) a 5= 1,200k,

Kk 3
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where

(8.52) A = (10752 022 (1107) - (140

k [ (l_an-FE) (1+052k+u)_.2 (k+1 )

2k+2) (1 ﬂ2k+u>

2k+2

1<)

With the notation of (4.14) with o° = 1, the elements of H defined

in (4.25) are

e & im n
i3 = Z X o fn” J
w1 n=1
_ im mj im m+1,j i,m+l mj
flll Y oo+ f121( z o +o o °)
m=1 =1
(8.43) 1
+ Z 1m k-m, J z im k+l-m,3
1,k-1,2 k2
X im mJ - ( {E im m+l, ., i,m+1 m,j>
f111 121 ¢ © o
m=1 m=1
- 1m k-m, j 1m k+l—m,3
k1,2 El T zl ’

, . .
the latter because crOJ = 0, o*k 1,3

= 0, and hence we can include the k-th
summand in each sum.

Substitution in (4.31) gives

in
2
_ (1-042) )\12{ Z (ﬂa)l*‘J (l_a2k+2 21)(l_azk+2 -23 )h

o i,j=1 1
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052 k igJ:‘l 1] 53_1 J
Gan) P23 (ain s oE S (o)t
. & iJ ; i
i,J=1 1,J=1
2 .
_ qo7) 2 (_a)1+3 e (_a);)-l . Lk+h
2 A . 1J iJ
o i,3=1 isJ=1
wi=]
(O

because h.., =h...
i Ji

The sum inside the square brackets will now be written in terms of

the f.. introduced in (8.43), and hence will contain the four terms

ijs

that will be calculated in the sequel. The first such term is

k k
£111 Y Y g ] §(41>1+J 2k+2( ) Mk+h mlmJ}
m=1 i,j=1
k k i im D S % (4x)igim Z (41)”3 Jm
(8.45)  =£y, 2 4|2 (e -2 i 551
m=1 |li=1 .
K e
ahk+h z:(41)=gggm ]
J=1 ]
By direct evaluation we find that for m = 1,2;...,k,
(8 L6) | % (41>1 im _»m(41)m(14x2k+2)+(k+l)a2k+2[(41>mm(41)qn]
) B 2 ko : ’
1=1 (1-07) (107%)
(8.47) li (.oc)"Jng _ m(“a>_m(l'agk+2)+(k+l)[ (a)m_(.oc)'m]
551 (1-07) (1077%)
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k .. i2
(8.48) [{ (-Ol)lcrlﬂ
i=1

-t

(na o )+(k+l)2 Wi+l (a2m+a-2m

2
_a2k+2 )

+
m2a2m ( 2k+2

10 ) +2 (k+1 )a2k+2( 2k+2)

-2) ,

2
(10°) (1

k ..72
8.49) | ¥ (4wﬂg3fi
=1 .

)+ (1) @M B0 o)
B 2
2 ogsp 32

2
20( -2m ( 2k+2

m 107 42 (1) (1K) (oo ™™

1<?) (1<

(8-50) {z(ml “’M z(m %

=] J L=
o, ok+2 @ o422 ok+2 Ok+2, 2k
m” (1-0 ) -m(k+1) (10 ) +(k+l) (1 o -(k+l)(l-a ho
> 5
(102) (102572)
2 2k+2 2m -2m
, (et1)7 (@ -2)
=L .
(102) (l_an+2)
2 2 1
Hence the factor of f in (8.45) is [(1-Otg) (l-agk+2) ] times

111

k 2
X {m2a2m(l_a2k+2) +moc2m[2(k+]_)oa2k+2 (1.(12k+2)+2(12k+2 (k+l)(l-052k+2)]
m=1

2
[ (k+l)2 hk+1++ (k+l)2 uk+li hk+h (k+l)2]+m20t-2m(l-062k+2) ahk”fﬁ

ukm 2k+2 )- Eahk+l+ 2k+2 )]

e - (k+1) (1 (k+1) (1

(8.51)

k+L b,k+l+ uk+u

200 (1041 )20 5 (011 )P0 (c+1)%]

2
2, 2k+2 ) +m[ -2 (k41 Yot

+ e (1022

2k+2 ( 2k+2 ) +2al+ k+h 2k+2 )

(k+1) (12
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2
. o Pkt2 (k+l)(1_a2k+2) _2(k+1)2 Lik+ M_Q(kﬂ)z Wl uk+u (k+l) }
Next we note that
< o .oom -2k E 2 2(k-m) -2  2(k-m) (kem)
Y mo™ = Y. (m-k+k )70 =a z(k m) % i Zoa
m=1 m=1 m=1 m=1
k .
2k § (k=m)0t2(kmm)]
m=1
2
(8.52) —a Z 2 2m Zchmmgk Z mkgagk_k2a2k+k2+2k2a2k]
=2K < 2.2m m .2 2m 2
= Ym0 ek X moP™ ¢ zot s
m=1
’ k k k
(8, 53) X .ma-Em il z ‘ma2m+k za2m+k) o2k ,
m=1 m=1 m=1 '
& ~2m 2k m k
8.54) Yo = LZQ‘+(1_OL bl I
m=1 =1

Substitution in (8.51) leads to

k
z {m2a2m o 2Er2y +xroz2mh (k+l)a2k+2 (1 _a¢k+2) ﬂzmu (k+1)2 Wi+l

O‘2k+lk( "’k+2 2 2m em . 2 Em] mw2k+h

) [0 k% S|

(k+1) (10t 02"

s 2 2
ok +1)2 2k+h om 2o Pk 2 (1 ~O_62k‘+2) —mh ( +1>a2k+2 (1 ookt ) 1

2
)2 hk+h 2 2k+u( 2k,+2) ek (1)

= 8k (k+1

Ok+l 1 ofk2y )l : 2k+ls (k+1)

(1-0F%)
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2kl Pkt 2 21<:+2)2 DK+

= 8k (k+1 ) [x° (1 2Ky

bk (k+1) (10 )+ (k+l)2(l=06

k o .
m=l

A 2
m2K12k+u(le2k+2)

; | )
N h(k+1y12k+u(1412k+2)] fh(k+l)2 btk 4 2k+u< 2k+2)

-Mk(k+l)a2k+u(1412k+2)

)»20621{-!-)—#] +m2 2a2k+2 ( 2k+2

+ 4 (k+1 1-0 ) i (1 P52 (1 oPE ) }

(8.55)

2

2 Ml P+ 2 ) b (1) (10

= -8k (k1) (62 (10”52 2hk+2

)+ (k+1)2 (1075 ]

2 2
+

1
5 k(kﬂ)

. (l_a2k+e)2(l+a2k+u) o2 (140°) (1-075) k0P[5 (107 )42] (10°)

(107)

21{) K (1=a2 )a2k
2

(1-07)

)2 (k+1) (1402 ) -koF (11

. k+2 o'
N 20;k+2(l o 2kr2 2 )] o2 (l,

2k
2 B

o2kt {br<k+l)2(lm2k)+k(l_a2k+2)[k(l_a2k+2)_u (k+l)]} o2 1
10

om 2m : :
where we have summed ngagm Yo " and Y a . This expression

can be rearranged to read
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2 2 2k 2 2
o (140 )(%_-OC ) (10772 (lﬂ2k+h>+a2k+2 {(l_aeme) [keaz_% (5c+5 Vi (1)
(1)

- ‘
X +O‘2k+l+) M} - Mk(k +l)062 (1 _a2k+2)

o2
(8.56) (1-07)
oxi2 2 ok ko 2 oK+ ok, b (k41 o [1402
b 10PE2) o) B[ 2)+<m ) (1oP%) L) ( g-ko?)
1.0 10 10 1.0

2, 2k _ 2,22
v 1ok 102 (141 )2 :[1 L o- (e )]} L okt {(l oPE2)" 2k

1~oc'2 .1=ot2

2k+2)

) u(l-q (k+i)k(1+o‘2) - 8k(k+l)2} s

107

and hence [(1412)(1412k+2)]m2 times (8.56) is the coefficient of f 4
in (8.45).

The remaining terms inside the square brackets of (8.Lh4) are

k k .

. 13 ome . Cpi Ol i ok+D .
flgj_ z [O_:ngm My;]m_lym l@mJ][ (zO’.)l J_OCEK E(ma)l J o k- (-OC)J 1
m=1 i,j=1

+_a4k+h(na>mi~j1

ey 3 {E}E <-oc>is-im][§<=a>jam*‘1ﬂ5]=ga2k+2[ s (.a>-ic,irri][§(a)agm+l,j]
RN N & 2 P
(8.57) |
ae( § ot § it}
i=1 =1 | |
ij Ji

where we used that o ¥ = ¢ 3
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2T =1 = 1 <oy

J=L i=1

(8.58)

[ E (=Oﬂ>jO'k&m?j]+ O‘ltkﬂt[ E (-—Ot)alo'lm}[ § (g)”jo,k"msj}}’
d

j =l i:l j :l

ko E {[E (uOﬁ)icrim][ i (.a)jc,kﬂmmpj] ogk+2[l

m=1 {Li=1 =1

e

41)~icim]
(8.59)

[ % (a)jgk+1-m,j] + ahkﬂ;[ 3 (_a)-l 1m][ E (a)mjo_kﬂum,j]} .
1 J

j:l .=l .:l

These expressions are evaluated as was (8.45). Finally we obtain for

(8.44 ) the expression

_ (107 N B
o« koo 22 ok
(107) (1 )
, 2 o o 2 2, .2 2
{(1m2)+a2k+2 (1.océ)[5=oczk_025 12<+2(1+oc )]}{o& (1;065) (102542 (1moc2k)(14oc2k+”)
(1) (1-05)
2k+2A1 hk+uA1 }
1 2
2 ' 3 2 2
i (a7} {5- T 0™ 0t et
o oki2, 2, ok 2k, WH3
(8.60) - 5 (10 ) (-0 + () +(_oc) 22}
(1)
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k+2 l-OﬁQv k+2 3kt2 Sk+4
R CCoN 1_a2k+2}{(“a) Py (o) e (007 ABB}

2 2k+h | |
po(a)f LLILL )R (0)) 40 Py 4 () n
+{ (<) ’(lxaglﬁg)e }{( 41 42 1;3}

where A and Al2 are easily recognized in (8.56) and

| ok+2 |2 07 (1-k)-3 (k+1)  k
A, = (1 ) {k(kjcl) = -

- (1) 12 (102 )+2K - (1) _‘?.‘..23 [1+212‘ - k(k+l)]}

2
(1-062) 1L 10

(8.61) '

o
b LoPR) {(1412k)(k+1) [a (l”§k> + & 5 =:4 ~7k(k+1)}
10 (1412)

2k, (kr1)2

s
lwa.g

+ (Lo

2k+2 )2 k (1+2k)oc2

2

- 21402
Ay, k(k+1)° (1407 )+ (10 >

(8.62)

2 2 4
(o) B2 4 o) HELLE

10 10

+ (1o
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Ok+2 2)( 1 (k+1)

_ by k(L) (k1)
= () LR g efET
Azl , - P
+ 1o _._2_0‘_2__2_ (k - ii"é)}
(1~o¢2) 10
(8.63)
+ (1-=oalLk u)llﬁ:(kﬂ +(1.=a21<;) M (3k - -—-—-=)}
g 2Kt2 2k, 3k(k+l)
2 2.2 2 2
AS _ uk(k+1) 2 +(l_a2k+2) {;_k2<k+l)a2 _ 2k 2Kd [k(1 )+2]}
2 102 o2 )
(107
2
_ (_1=o¢ u/k+1)2 2 1+oz2
10
(8.64)
r (1 ua21\:+2> {(l +a2k+2> uk(k+1)o¢2 f (1 =a2k) -k(k+1),otl“
102 107
+ k(k+l)[2k(l=062)=v(l+062)]} s
(8.65) A = bk (1)%
2 2
2k+2 k(k+1 2
b, - (10 +2y {21{ . 2;2) - (1407K72) k\k+l)2(2k+l)
2 2
2k, & k-1 140
(8.66) + (107 [k+ 5 - z
10 10 2
(1-0%)
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v @ (e o (02k) BALE o >}

1.2 a? (10°)

3 (41)°

E
1412

2k+2)

- (1 (1=.oc2k)

- k(1) <l-a2k+2>2{§- el )2 - 210 | 2P0t |

107 (l_ae)g
. (l_an+2){<l+d2k+2) k(k+1)(5g4.2+1) b (1028 (k+l)2062}
10, 10,
(8.67)
_ (1;0521{) 8(k+1)2oc2
10°
(8.68) By = b (1 )2

By operating with these components one obtains the form

2 2
A 2 _
(8.69) v = (107 xi (10PE) + —E (145 ) {a2k+231+ahk+hB2+a6k+6B5} ,
@ =O£2k+2 ) a

where

2062

(8.70) B, = (14’121‘*2){k(k+1)(1uot2=ka2+k)+(1=a2k) - [k(107) (1-20° 2K )+3

(107)

- 1ooc2+5ah+(1mo¢u)]-(1+oa2k+u) 5 k(x+1) (2k+1) (10 )}
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+

(1% {_2 (k41 o2 (+1)+ (107) [3-2 (c41) (140°)]
| 1-0F

. (lﬂ2k> Lt(k+l)2(l+062)05u

lnag

N (1+042k+2) 2(k+1)oc”[5k(1-oc2)~u]

2
10

+ (10

2ty o 2(l—k)+k062 (30°)
(10%)

4062k+2

+ (1

) (J_+oc2k+l+ ) a_m2 (e) }

10°

+

10 Lk 1-0) 024 1121+ (1207572 : k(k+l)(2k+l)(l=052>}

(1467572 602 (102 )% (k1)

+

2
(10PE2) { %‘ (1407 ) [3K702 - (45 i (1) ] +%’ K (L) [3 (10#1 ) 1507 (-1)

+

ok
10°

!
) S P (140®)- (@& 1)1 -0

2k-+l )k o+k (1=ocg) }
10 1-0

+ (1o
2

,agk”*

= {<1a2k>6<k+1>2a2~<1+a2k+2>6k (k41) (10° )0 (1.05) (1407572)

2,0 2, .2
2P (g1 ) P10 ) =301 -1} ,
107
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(8.71) B, = 2k(kt1) (107)[ (1:07) (2k-1)40]

¢ (1908 )42k (140 )2

+

2

(1072 ){ — L 1 0f)8P (k1) (107)
(1a%)

3 3

2
+ 2x0f (1.07) (1.0°) ,

1W0° (2k+ (k+1) Bkt ) -(1-07)

2
1115{+]_5 k(k+1)]m(1+ot2k+u )2k 2+1<;(l_o¢2)
(1)
a? o w2, 2 24k(10°)
+ (1.agk) ~— 20 [1~k(1-ozg)]+(1+oc2k 2)z_oc k —-—-—-2——}

1o (1.a2)

_|.

2 {
(1-a2k>{ 20011% [ 15 )02 (51308 )1+ (14025 2 o 1 (1 02) 2]}
1

+

2
(lﬂ2k+2){ 8k(k+l)0t2+(1=062)

(2,2 _ (45 )i (k41) )
3

- (1+oc2k+”)k[k'(1-ag)+2]}
o 2
. (1.a2k+h)2k(1—062){ ) (k;l) N 2(1;:;2)0‘ - (1ioi)2 (k (102 )42 )}

202" 2l P

l«=062

+ (1

2k
PR 8k(k+l)2<1=a2 )052 P s (k+l)25 (1+ol2)
_062k+2 lwa2k+2

b (1eE2 ) (41 02T (1407 ) 10 (107)] - (10250 (41 )2052}

132



2k+h 2k+2 2k+2 2
= L2k (er1 ) (50Pa) + HE— [obie (v )0 (102 ]
10777

| e ) (L
- P

1

2k+h |
o { Bk (k+1)2 (102 )+ (107% )16 (k+l)2052}

2
2k -+
Q k 2)

2k+2 2

. (1:075) (10 0%+ (14075 (1041 ) (107 ﬂ”'} ,

‘ 2
412K%2)

L (e )2 (108)
(1 )

(8.72) B, = =10k (k+1)(1-0° )= (10752 )00l + (1407572 ) o® (1.0 Yo

3

+ ——;?;;-5{_181:(&1)2(1.042)(2+052)_(1.<12k)8(k+1)2a
10

L

; <1+oc2k+2>uk<k+1><1~oc“>}

2
- —--i—g—g { - (1402528 (41 )P (102) - (102 e (141 )P (mg)} i
(1-0=5)

This completes the proof that (4.31) is given by (4.21). Q.E.D.

8.5 Proof of Corollary 4.7 (Section 4.3).

From (8.42) we have that

2a2k+2 2k+2 2k+4 )

(140°)- (140
2k+lr)

(1
2k+2

2

[{(1 Pkt ) (1o -2(k+1 ) (1 o )]



(10 1407572 (140 )10 (075) 1 (107572 (1.0°) (3 ) 0 (02) 2

2k+2 2k+2

(10%) (2k+3 )+0 @ZF)]

[ 1407572 (2407 )40 (@FF) ] [1-20

2k+2 2k+2

]

[-14075%2 (2402 )40 @FF) 1 [1+4207572 (107 ) (243 )+0 (@F) ]

1l

1+0PF 2] (2402 )2 (102 (2843 ) 140 @)

so that

(8.74) A = 110™TE[L (107) (2k43) -2 (2407) 140 (07F)

Substituting in (4.21) or (8.69) we have that

©.75) v = (1=oc2)(1.ocgk){ 14025201, (102 (2543 ) -2 (2+a2)}+o(o¢2k)}

5 2

L a-o)  ekte B(o){lmzme[ul_az)(2k+5)_2(2+a2)]+0<a2k)}

a2 1

1
[1-20E5"240 @75)] 40 @%F)

= (0®) {1.471-00% (107) (k3 )+20P (2407) 140 @2%) |

2
v (10?) oPk Bl(o)+o(ot2k)

Il

2
(1-@2){1-agk[1_8o?+ 1uauu8k(1-a2)oc2]} + (10°) ocEkBl(o)m(ocgk) ,
which is (4.32). Q.E.D.
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9. MATHEMATICAL DETATIS CORRESPONDING TO CHAPTER 5.

9.1 Proof of Theorem 5.3 {Section 5.2).

Letting o° = 1 without loss of generality, and using that g ~ ()t

we find that for 1,j > 2

. ., = 11 LU, = a, ..ta, . Ta, .. ta,
(9.1) %43 T s 6050 B350 %50 %43 B gl 0

o

where

a1 = [ e (a3 ()T uiat

b (o)L (@)t (o) s (@)t (00 L (@) ) i 1002)
(9.2) v () (ncPiat)

= ()72 (11022 (1450R 10" )80 (140P PeacP (LebioPro )
yi+i-2 L2

= (O [d%}m2f+@ﬁx

:(4wigf+@af’luﬁﬁ)ﬂurm2)

152
(9.3) = (o)t (el | j=2,
- (o)t p? - (@)t ie?) i3,
635 = _2(4x)3(1+o?+aﬁ) , | N .' i=2,
o) By, “ i3,

2

)71, (i,5 > 1)



I
'_I
t
So
E&r

Al ; :

2 5) 1=3=2,3,...,k,
(9.5) = 20(1+07) hi-31=1, 1,4=2,...,k,
-of, | [i-3]=2, 1,3=2,...,k,
aijs = 0, otherwise .

To evaluate a,; and 2 5 for j >2 weuse (5.14). Combining

these results we find out that the 8,5 are given by (5.21) with 8 517

832

and 8 53 defined above holding also for the case of i or j
equal to 1. That is why we included the value of -1 in the ranges of
(9.2), (9.3) and (9.4) above.

We further approximate as in (4.41)

. % . 2,2 R
(9.6) % ~ _(l_a2)2(_a)g-l = (i%—)—_ ("a)J P J=1l,2,...,k,
. j-i 21
(9.7) ot L) %ix L, i>i
10 -
Then
k * k .
AV S L
i,3<1 aa*g s,t=1
1~o¢2)LL 2 2.2 L2 K = i+ s+t-2 is tJ
B[0P )Praet Pl Y Y ()t ()Tt
Q i,j=1 s,t=1
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k .. k e
s Y () @ty ¥ (w)SetSRd
i,j=1 s=1

+

k . .
() (1f)  § ()SetS0d
s=1

(9.8) Etestd

+

k
(-2) (ioPsat) § ()
t=1

k . .
() @of) ¥ ()bt
t=1

+

+

k . R k-1 . .
+
(-l+lLOt2+06LL ) ¥ o5 +hal(1+0F ) Y oot 1,3

k-2 R .
+ 20f Y 0_1$US+2,3]}
=2

4 2 2.2 L2 k A
_ (-0f)" [ PP uat) i
= { " Lgl(_a) Di]

k . : k .
- n(10Pia ), L (2)n 20, 3 (@)’

2ok o k-l PE= ‘
+ (1+hoF+at) S;g D_D_+ho(1+0°) Szg DD, *2 s§2 D_D_ +2} ,

where as shown in (4.42)
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) D = iis , i o~
(9:9) s El =) 1-0° E )7y (12)
Then
L - 2 2 T L 2
~ .(1.a2) o (1+ot2) +(1+a”) o L (140R il o 20F
TR { o (10°)° ere) (102 1.
3 2 o2 L k
o0 (1402 ) 300 o (1+ho+Q") 2,28
PEWETE wdr | abP L

+u.a(1+b62) k'l a ‘_a 2s+1 201,2 k=2 0 2842
ISP L@ B 1 sten }

2k {GQ o? (J_+o?)2+ (1+ocu)2 80£u 1+ot2+05u . 6oc6 (1+ot2)
2.0 B 2.k L
(1-02) (1-07) (1-0)

K 2 1 2 >
2,28 [1+uoc+a Lot oy, = ae]

) (.
102 (10F)°

8=2

ko o [la(1ed) 20° 2]}
0l —_— el + 20
i s§2 [ (1.052 )2 =) (1.oc2)

. 2\4 2
_ (109) [ o 1702180 584508 _2arO)

o2 (1-a2)6 (
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) 0 o0
(9.10) , 1 o2 yof 3 sothJ
s=2

(1432)2 (1_a2)2 §=2

_ (1_052)u of [1-7o?+180tu_5o¢6+5048=2a10 N (1_ocl‘)(l;ot2-5ozh+o§)
- 2

o2 12yt (102 )2 1o

- Lof (gag_ah )]

-t [1-7062+180tlL -5ot6+5068-20610+ (1 ..ocg) (1.051* ) (ua2_5oz”+o¢6)

(1-02)7

- 10°(10°)° (2P 0]

= 1 [1.50?+5au+15a6=70§_20;0+0;2] R

which is equivalent to (5.24). Q.E.D.
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APPENDIX A

A. The Finite Autoregressive Representation for q > 1 (Section 1.2).

Tn Section 1.2 we derived the exact representation (1.17) when g=l.
We want to extend that result here.
For genersl q we proceed along the same lines. From (1.1) by

successive substitution, we have

ep = vy + (oo g+ (opleg o oot (g )ey

1l

ooot
vp + () [3 * (odeg o vt (e ]

(A.1) + (g-oag)et_‘2 toeot (-oaq)et_

q

Il

V=MV ¥ Ualﬂ*ﬁ)+(4@ﬂem2+”'

+ [(_al)(.ozqul) + (.aq)] R R C AL

Tt is then clear that at stage k (k = 0,1,...) we have an expression of

the form

(A.2) + 8

€=V T YV Tt Ve T Okl T Ogqkt-k-q ?

substituting from (1.1) and (A.1) above yields

F+ooot+ (O )€
()

o = oA
(A.3) k1 = Yol T %)%k bok-lmq’

we see that
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6j,k+l = 61k. (_aj) + 5j+l}k J j = 1J2}°‘°)q"l 2

(A.) By k1 = O1x (Pg)s

Y41 T O1x ¢

These recursive relations are the same as the ones obtained by analysing in
like manner the autoregressive model; see Anderson [ (1971a), p. 168].

Hence the alternative representation of (1.1) is

k q
(A.5) L YV =€ - % B.. € . .,
520 9 t=J t 5 3okt Tt=k-j

vwhere the coefficients satisfy (A.4). Denoting as before
-t
(4.6) 6,k T % T L Py Stekay 7
we verify easily that
¥ —
(A.7) get’k =0

for all relevant t and k. We compute the variances and covariances as

follows:
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q

q
* G* - , - - - -
%6,k t+s,k g[et jg; gjgk+l€tmkmj][€t+s iéi 6j§k+l€t+s=kmj]

&

(Ao8> = g€t€t+s - jgl 6391{_'_1 g(e't€t+s=-k_==,j + Etmk—vjet_l_s)

94 g
+ )

8. . ,.0, . £ L€ .
ol M BN PR AP “Ttekej trs-k-3

The independence of the et’s implies that

(A.9) g%ﬂﬁs=@2, s =0,
(A.10) £t hrsukag = oo , s =kt ,
(A.11) '§€t=k=j€t+s = Ug , s = =k=j ,
(A.12) éﬁt=knj€t+s=k=j’ - 5 s =3 = 8=3J' ,

and equal to O in the other cases, respectively.

When 8 = 0 we are left with

, % ~
(A.13) Var(etyk) =g



and, as in the case of q = 1, Var(ez k) > V’ar(et)°
2
. . . . 2
-l " Y =
For s % 0, (A.10) gives rise to a contribution of ¢ as=k,k+l’
provided that 1 <s-k<gq (i.e., ktl <s < g+k); (A.11) gives rise

to & contribution of =626 provided that 1 < -s-k < q (i.e.,

-8k, k+1’
ktl < -8 < q+k); finally (A.12) gives rise to a contribution provided
that 1 < s+j < g (which implies that J <g=-s; also s = j=j' implies
that |s| < g-1).

For g > 1 it then turns out that the final expression for (A.8)

is:
% % o q“ls!
COV(etgk,€t+S’k) = o j:l Sj’k'l'lsjﬂlsljk'i‘l} lsl = l)g’ooo)q“'l 9
2
(A.14) = =0 6l8|~k,k+l s ISI = ktlseee; gtk
=0, otherwise ,

with the convention that if q-1 > kt+l, the first two expressions must be
added to give the covariance of lag s, when s ranges over the set of
integers such that g-1 > k+l. In general we are interested in values of
k wvery large compared with d.

With the kind of notation introduced in (1.22) through (1.25) for the

case where %t ranges in the set {1,2,...,T}, we now write
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¥ _ ‘o
(A.15) S .
6*
T,k

Its covariance matrix is of order [T+l-{k+q)] with £¢* €* as components.

® ik gk

The diagonal components of this matrix are nonzero and the components within

g=-1 of the mainbdiagonal are nonzero; the other nonzero components sre

from k+l1 +to kt+g positions above and.below the main diagonal. If k 1is

increased the gaps between the three sets of nonzero components are increased.
For the sake of completeness we write (A.14) in matrix form, using G,

matrices of order [T+l-(k+tq)] defined in (1.25):

o %ﬁ 2
© % ¥ -
ES & =0 |17 £ B wt1| A1 (ktq)

5 g=1 g=8
A.16 +a G S. 5,
( ) R e jgﬁ Joktl j=8,k+1
g=k
2 !
- z: G_
sl S=k,k+l ~8

We conclude that the generél,moving average (l.1l) of order g has
a representation as an autoregfegsion of order k given‘by (A.5), where
the error term gg has zero expectation and the covariance structure
(A.16). In the general case, from (A.5) we have that
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k %, 5
Al . =€ = Lo

and the mean-square representation

(A.18) L YL_s =€
50 J° t=] t
. . q 2 o s
will be proved if 2:j=l 6j,k+l converges to zero as Kk -» . This is shown

to be true in Anderson [ (1971a), pp. 168-70]. Hence we conclude that the
moving average (1.1) is equivalent (in mean=square) to the infinite auto-
regression (A.18).

Notice that 6j,k+1 - 0 implies that the covariances in (A.14) tend
to zero and the variance in (A.13) to 02, as k tends to w, which

provides another way of interpreting the-transition from the finite

representation (A.5) to the infinite one (A.18).
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